Unsupervised Emotional Pattern Recognition Using Rhythmic and Vocal Features
Authors: Neda Mousavi, Seyyed Saeed Sarfjoo, Sven Grawunder
Abstract:
In this study, we address the complex dynamics of emotional speech and comprehensively examine the integration of rhythmic and vocal features to recognize emotional patterns. Our exploration is conducted using two German emotional corpora: VMEmo and EmoDB. Employing a combination of supervised methods (here linear discriminant analysis, LDA) and unsupervised techniques (here kmeans clustering), we aim to uncover nuanced patterns within the emotional speech in these corpora. The application of LDA highlights salient patterns across different feature sets and focuses on the classification of speakers and prosodic characteristics. In addition, k-means clustering uncovers latent structures that reveal subtle mapping between emotions and speech behavior. Our results suggest that it is possible to cluster data based on prosodic behaviors that are influenced by emotional changes. Although precise mapping to the actual clusters derived from emotional labels could not be fully achieved, the results nonetheless reveal a moderate level of success in this investigation.


