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Abstract: In this study, we address the complex dynamics of emotional speech and
comprehensively examine the integration of rhythmic and vocal features to recog-
nize emotional patterns. Our exploration is conducted using two German emotional
corpora: VMEmo and EmoDB. Employing a combination of supervised meth-
ods (here linear discriminant analysis, LDA) and unsupervised techniques (here k-
means clustering), we aim to uncover nuanced patterns within the emotional speech
in these corpora. The application of LDA highlights salient patterns across different
feature sets and focuses on the classification of speakers and prosodic characteris-
tics. In addition, k-means clustering uncovers latent structures that reveal subtle
mapping between emotions and speech behavior. Our results suggest that it is pos-
sible to cluster data based on prosodic behaviors that are influenced by emotional
changes. Although precise mapping to the actual clusters derived from emotional
labels could not be fully achieved, the results nonetheless reveal a moderate level
of success in this investigation.

1 Introduction

The study of communication, which encompasses various aspects from linguistic analysis to the
recognition of emotions, is a diverse and important field of research. Within this broad field, the
study of emotional speech occupies an important place that encourages in-depth investigation
and research. To this end, numerous corpora have been compiled to explore emotional speech
and shed light on the intricate interplay between vocal features, linguistic cues, and underlying
emotional states. However, the methods used to elicit and represent these emotional nuances
differ considerably between the various emotional corpora, not only in terms of how different
emotional categories are handled but also in terms of the fundamental question of how emotions
are conceptualized in speech.

According to the literature in the field, individuals typically can experience different emo-
tional states at the same time. Psychologists have sought to understand the structures and sub-
tleties associated with mixed emotions [14]. Within the extensive spectrum of human emotions,
around 34,000 different variants have been identified [19]. However, many of the available cor-
pora contain emotion labels that only represent prototypes of such mixed patterns. Datasets such
as the Danish Emotional Speech Corpus [6], the Berlin Emotional Speech Database (EmoDB)
[4], and the FAU Aibo Emotion Corpus [1] can be mentioned in this context, which apply lim-
ited labels to emotional speech emulated by humans. Other corpora, such as the VMEmo corpus
[23], follow a different methodology, according to which the speaker’s emotional fluctuations
are not directly indicated by emotional labels. Instead, these changes are derived from linguistic
peculiarities that comprise the speaker’s expression to convey his or her feelings.
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This serves as the starting point for our investigation, which aims to determine the necessity
of explicit emotional labeling for the classification of a speaker’s emotional state. Specifically,
we investigate the possibility of using unsupervised methods to classify emotions in speech that
are subject to emotional fluctuations and are only reflected in labeled linguistic behavior. To
achieve this objective, we performed a focused analysis using the VMEmo corpus and then
used the EmoDB corpus as a reference to evaluate and validate the results obtained. VMEmo is
a subset of the broader German Verbmobil project (VM), a project conducted between 1993 and
2000 aiming to develop an automatic speech-to-speech translation system for German, Ameri-
can English, and Japanese [23]. The corpus includes speech signals derived from the interaction
between humans and a machine involving an agreement on a specific topic. Within these dia-
logues, deliberate attempts were made to elicit specific emotions from participants through the
system’s responses. As a result, speakers’ speech patterns are subject to emotional changes that
influence their linguistic behavior and are characterized by lexical, conversational, or prosodic
peculiarities. Although there is no direct labeling of emotional mode, variations in emotional
mode are thought to trigger the use of different peculiarities, thus revealing latent emotional
dimensions of speakers. In addition, the EmoDB corpus, a collection of acted emotional speech
in German, serves as a reference. This corpus consists of ten sentences performed by ten actors,
each representing six different emotions. In this way, EmoDB relies on actors evoking emo-
tions through e.g. the Stanislavski method, drawing on past intense emotional experiences to
express them authentically. The emotional labels include, notably (German terms in brackets)
neutral (Neutral), anger (Ärger), fear (Angst), joy (Freude), sadness (Trauer), disgust (Ekel) and
boredom (Langeweile).

Investigating consistent cues and acoustic measures for analyzing emotional speech is the
next aspect addressed in this study, with previous research dating back to [7]. Several studies
[17], [21], [15] indicate differences in acoustic measures such as pitch, pitch range, rate of
speech, voice quality, and articulation accuracy across different emotions. In addition, research
[9], [8], [12] has investigated the use of rhythmic features to identify the emotional state of the
speaker. Therefore, the aim could be to find out which attributes - whether vocal, rhythm-based,
or a combination of both - provide better results in such analysis. Consequently, this study
addresses two key aspects: firstly, the clustering of emotion patterns without explicit emotion
labels, and secondly, exploring the role of rhythmic and vocal features in the representation of
these patterns.

2 Method

Focusing on two datasets, VMEmo and EmoDB, this study evaluates three distinct sets of fea-
tures – rhythm-related, voice-related, and a combination of both – to assess their performance in
recognizing emotional patterns. The VMEmo-derived dataset contains the human-generated au-
dio files of 33 individual speakers, the textual content of each spoken phrase, and the particular
prosodic tags that characterize the speakers’ different linguistic strategies during the engage-
ment. To ensure the accuracy of the data for the rhythm analysis, phrases shorter than 4 seconds
were excluded according to [22]. The audio files were automatically segmented using the Web-
Maus service [13], whereby the corresponding orthographic version was used for each signal.
Additional tiers were integrated into the Praat[3] TextGrids to enhance the annotations, includ-
ing the phrase number, the peculiarity tags, and the intervals regarding consonants and vowels.
The EmoDB corpus was subjected to the same procedure in preparation for this analysis.

The analysis of acoustic characteristics included an evaluation of various indices associated
with both rhythmic patterns and vocal attributes. For rhythm analysis, this included an assess-
ment of the duration of each utterance, as well as metrics such as V% (the percentage of vocalic
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intervals) and the standard deviation of consonant intervals [20], pairwise variability measures
(nPVIv, rPVIc) [10], varcoC and CV rate [5]. In addition, standard deviation (SD) and nPVI
measures for peak and mean values within the intensity and frequency domains [11], [16] were
included in the analysis to capture domains beyond time. Finally, a total of fifteen different
rhythmic features were included, all of which were normalized using the StandardScaler class
in scikit-learn library [18]. The Praat based voice analysis included the assessment of metrics
for pitch stability (known as jitter), amplitude fluctuations (shimmer), and parameters of sound
quality (HNR) and fundamental frequency. Thirteen different features were generated for the
voice analysis, comprising metrics such as jitter (local, rap, ppq5), absolute jitter (local abso-
lute), and shimmer (local, local dB, apq3, apq5, apq11 and dda), HNR, and mean and standard
deviation of the fundamental frequency.

Employing scikit-learn library [18] to implement linear discriminant analysis (LDA) as a
supervised model, two different models were used in this study - one for speaker recognition
and one for prosodic peculiarity recognition. Both models were trained based on explicit labels
corresponding to speakers and prosodic peculiarity tags in the corpus. The study is then ex-
tended to an unsupervised clustering based on the same package, using the k-means algorithm
to identify and classify emotional states in the absence of direct emotional tags.

3 Results

The preliminary results consist of the performance metrics derived from linear discriminant
analysis (LDA) applied to speaker recognition and prosodic peculiarity identification within the
VMEmo corpus. Different metrics, including accuracy, precision, recall, and F1 score, provide
insights into the classification performance achieved with different feature sets. Using scikit-
learn library, a function was implemented to obtain the metrics using the predictions generated
by the model on the test data and comparing them to the true labels. In this context, the effects
of using different feature sets – rhythm-based, voice-based, and a combination of both – can be
compared.

subcaption In the context of speaker recognition, the performance metrics for different
feature sets reveal varying levels of effectiveness (s. Fig 1). Rhythm features exhibit an accuracy
of 37%, precision of 39%, recall of 37%, and an F1-score of 36%. Voice features, on the other
hand, demonstrate lower performance with an accuracy of 22%, precision of 19%, recall of
22%, and an F1-score of 19%. The combined features, encompassing both rhythm and voice
aspects, achieve better results with an accuracy of 46%, precision of 48%, recall of 46%, and an
F1-score of 46%. For the recognition of prosodic peculiarity, distinct patterns emerge (s. Fig 2).
Rhythm features exhibit an accuracy of 44%, precision of 33%, recall of 44%, and an F1-score
of 34%. Voice features demonstrate an accuracy of 38%, precision of 41%, recall of 38%, and
an F1-score of 23%. The combined features, integrating both rhythm and voice characteristics,
yield an accuracy of 45%, precision of 37%, recall of 45%, and an F1-score of 37%. These
results underscore the significance of considering combined features for enhanced prosodic
peculiarity recognition in comparison to individual rhythm or vocal feature sets. Rhythm and
combined features also show relatively comparable performance patterns in the areas of speaker
and prosodic feature recognition. In contrast, vocal features differ significantly from each other,
showing significant differences in results between speaker recognition and prosodic peculiarity
recognition. However, a more detailed analysis is required to clarify the factors contributing to
this observed trend.
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Figure 1 – Performance metrics for the classification of speakers across different feature sets

Figure 2 – Performance metrics for the classification of prosodic peculiarity tags across different feature
sets

3.1 Unsupervised clustering using k-means algorithm

Concerning the main focus of this study, the k-means clustering algorithm as an unsupervised
model is used to recognize emotional states during Human-Machine interaction. The primary
challenge is to identify emotional patterns in speech when no direct emotional labels are avail-
able, relying on the assumption that variations in linguistic behavior reflect underlying emo-
tional fluctuations. This framework emphasizes prosodic features that act as mediators to cap-
ture the nuanced interplay between linguistic cues and emotional states. Through the applica-
tion of the k-means clustering method to the prosodic tags of the datasets, we aim to reveal
distinctive clusters that signify emotional expressions embedded within the speech data.

The optimal number of clusters (k) in the k-means clustering analysis was determined by
the sum of squares within clusters (WCSS) metric [2]. The WCSS calculations were performed
over a spectrum of potential cluster counts, and the elbow point, which denotes the optimal
clustering point, was determined. Using this metric, a consistent cluster selection of 5 was
achieved for all feature sets of VMEmo corpus. Then, based on this selected number of clusters,
the distribution of observations was visualized using the reduced-dimensional space of principal
component analysis (PCA). The centroids of each cluster are indicated and provide a visual
representation of the effectiveness of the clustering algorithm in separating observations (s. Fig
3). Clusters that overlap may indicate similarities or mixed characteristics between classes,
while clearly separated clusters indicate clear and distinct categories.

To quantitatively assess the discriminative power of our model and identify potential areas
for improvement in feature selection or clustering algorithms, we use the silhouette metric.
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Figure 3 – Unsupervised clustering of VMEmo across different feature sets

Figure 4 – Quantification of the degree of separation between the clusters based on the silhouette value

This metric, which ranges from -1 to 1, provides information about the degree of overlap or
separation between clusters (s. Fig 4). A value close to 1 indicates well-separated clusters,
suggesting robust clustering performance. Conversely, values close to 0 indicate clusters with
some degree of overlap, indicating areas where either feature selection or clustering methods
need to be improved. Negative values indicate possible misclassification of data points.

In Figure 4, the value of 0.116 for the rhythm features indicates a medium level of consis-
tency within the clusters. The vocal features have a stable silhouette score of 0.291, indicating
better-defined clusters. However, the combined features have a lower silhouette value of 0.105,
indicating weaker separation and less consistency within the clusters.

3.2 Analyzing the EmoDB corpus as a reference for the clustering analysis

In the following, we use the EmoDB corpus as a reference to evaluate the unsupervised cluster-
ing results. Here, the clustering results are compared with the known emotional categories in the
EmoDB dataset, which provides insights into the effectiveness and accuracy of the clustering
algorithm in capturing different emotional patterns in the speech data. Similar to the previous
series of analyses, three different data sets were created, emphasizing rhythmic features, vocal
features, and their combination. Applying WCSS method to these data sets consistently resulted
in an optimal cluster number of 4 for each set (s. Fig 5).

To evaluate and compare the clustering outcomes with explicit emotion labels in the three
datasets, two widely used metrics were used - the Adjusted Rand Index (ARI) and Normalized
Mutual Information (NMI). These metrics range from 0 to 1 and quantify the similarity between
the clusters generated by the algorithm and the true emotion labels. Consequently, they serve as
tools to assess the accuracy of the clustering results. Considering the 7 emotional labels of the
main corpus, we performed an evaluation using two clustering approaches. The first one used
the optimal cluster number of 4, which was determined by the WCSS criterion (s. Fig 6). The
second approach used the number of 7 clusters to match the actual number of emotional labels
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Figure 5 – Unsupervised clustering of EmoDB across different feature sets

present in the corpus (s. Fig 7).

Figure 6 – ARI and NMI values for 4 clusters (EmoDB)

Figure 7 – ARI and NMI values for 7 clusters (EmoDB)

A comparison of these results reveals that the combined dataset shows stronger agree-
ment between the clustering and emotion labels, with higher ARI (0.1401) and NMI values
(0.2237) compared to the rhythm dataset (ARI: 0.0468, NMI: 0.0839) and the voice dataset
(ARI: 0.0924, NMI: 0.1718). This suggests that merging rhythm and voice features can im-
prove the correspondence of clusters with reported emotion labels. However, all datasets show
moderate agreement between the clustering and the explicit emotion labels, suggesting that the
clusters may not fully represent the labeled emotions. In the second graph, similar to the choice
of 4 clusters, the voice features outperformed the rhythm features in cluster performance, and
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a combination of rhythm and voice features improved performance compared to the individual
features. In addition, considering the minimal difference between the results of the two clus-
tering with 4 and 7 clusters, it can be concluded that by selecting the number of clusters from
WCSS analysis, the algorithm focuses on the most well-shaped clusters of the actual data that
reach ARI and NMI scores similar to the condition when we use the actual number of clusters.

4 Discussion

This study explored the potential of clustering observations by utilizing prosodic information
derived from the speaker’s emotional fluctuations and assigning them to respective emotional
classes. Using the unsupervised K-means algorithm, the analysis focused on the VMEmo cor-
pus, which consists of German emotional speech. In addition, the influence of feature selection
on the clustering results was investigated. The three different groups - rhythmic features, vocal
features, and their combination - were compared. The results show that although the feature
groups considered ultimately produce a relatively equal number of clusters, the separability of
the resulting clusters varies between the different features of the VMEmo corpus. Vocal features
show clusters with higher differentiation, while rhythmic features and the combined sentence
represent a moderate degree of differentiation. Moreover, the potential mapping of the resulting
clusters to the actual emotional clusters in the corpus was assessed using the EmoDB corpus,
which contains explicit emotional labels. The results show a moderate mapping between the
clusters of the unsupervised algorithm and the actual emotional labels in the corpus. Even when
the number of clusters of the unsupervised algorithm is intentionally set equal to the emotional
labels in the corpus, there is only a minimal difference in this mapping. Although these results
have limitations, future research could investigate other feature sets, such as spectral features,
which may yield clusters with greater correspondence to emotional clusters.
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