@InProceedings{Lotz2018_409,
author = {Alicia Flores Lotz and Fabian Faller and Ingo Siegert and Andreas Wendemuth},
booktitle = {Studientexte zur Sprachkommunikation: Elektronische Sprachsignalverarbeitung 2018},
title = {Emotion Recognition from Disturbed Speech - Towards Affective Computing in Real-World In-Car Environments},
year = {2018},
editor = {André Berton and Udo Haiber and Wolfgang Minker},
month = mar,
pages = {208--215},
publisher = {TUDpress, Dresden},
abstract = {Certain emotions can have a negative effect on the driver’s capability
of safely operating the vehicle and can ultimately lead to accidents. Therefore, it
would be beneficial if the vehicle was able to detect the emotional state of the driver
and provide appropriate assistance to mitigate these effects. This study investiga-
tes the influence of in-car acoustic characteristics and driving noises on emotion
recognition from speech. The quality of the noisy speech samples was analyzed
by calculation of SNR and CER[%]. Afterwards, classification experiments on
high quality, in-car and noisy speech samples were carried out and evaluated. Data
was recorded inside a car cabin in a simulator environment, resulting in realistic
conditions where perturbations are being convoluted with the speech samples. For
comparability with the state of the art, standard emotional speech databases were
used for the evaluations conducted in this study. By considering the evaluated qua-
lity and classification measures, we conclude that high quality emotional speech is
most severely impaired in the car, and that highway noise reduces the performance
of the emotion classifier strongly. This leads to further requirements for in-car
emotion recognition.},
isbn = {978-3-959081-28-3},
issn = {0940-6832},
keywords = {Affective Speech},
url = {https://www.essv.de/pdf/2018_208_215.pdf},
}