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Abstract: Optopalatography is an articulatory measurement technique with a broad
range of applications, e.g. in speech therapy and Silent Speech Interfaces (SSI).
This papers uses a custom-developed OPG device as SSI for the task of com-
mand word recognition and investigates the relevance of different sensing positions,
namely at the lips, at midsagittal positions, and at lateral positions, for the recog-
nition accuracy via an ablation study. A corpus consisting of 10 repetitions of 100
different words was recorded by 4 speakers and served as input data for a recurrent
neural network. Three types of evaluations were carried out: single speaker, leave-
one-speaker-out and multi-speaker. The mean accuracies obtained in the single
speaker and leave-one-speaker-out evaluations were 81.25% and 47.93%, respec-
tively. The multi-speaker accuracy was 90.25% and is comparable to the state-
of-the-art. The ablation study results showed that the single speaker recognition
using only midsagittal sensors yielded a relative decrease in accuracy of 4.92% in
comparison to when all sensors were considered. In multi-speaker evaluation, on
the other hand, sensing configurations using either lip or lateral sensors showed
relative accuracy decreases of 2.49% and 1.94%, respectively. The more sensors
are removed from the input data, the larger are the accuracy decreases, meaning all
sensing positions improve recognition accuracy.

1 Introduction

Devices capable of measuring speech articulation find applications in a variety of activities, such
as Silent Speech Interfaces (SSIs), speech rehabilitation and experimental phonetics. These
applications are however limited by the characteristics of each device, e.g. portability, inva-
siveness, robustness, and temporal/local resolution [1]. For example, a measurement technique
which is appropriate for laboratory phonetic measurements like electromagnetic articulography
(EMA) due to its accuracy, might be inappropriate for Silent Speech Interfaces or even for field
phonetic measurements, since it is not portable and demands a rigid procedure to attach its
sensors [2].

Optopalatography (OPG) is one technique for measuring speech articulation whose fea-
tures such as portability and robustness [3] make a viable alternative for a diverse range of
applications. So far, OPG has been applied in speech therapy [4, 5] and SSIs [6, 7]. This paper
presents a study on OPG-based command word recognition, which is a task commonly per-
formed by SSIs as its generally easier than continuous speech recognition, but already enables
a series of use cases, e.g. human-machine interaction.

The task of silent command word recognition, i.e., the recognition of spoken command
words without the use of acoustic speech data, has been tackled using a variety of sensing
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modalities. Using electroencephalography (EEG), Vorontsova et al. [8] achieved 84.5% recog-
nition rate on a single speaker corpus of 9 words using a deep neural network composed of con-
volutional and recurrent layers. With surface electromyography (sEMG) sensors, Wu et al. [9]
classified between 100 daily-life commands using deep convolutional neural networks with an
accuracy of 90.67% in a multi-speaker setting (28 total speakers). A custom developed stepped
frequency continuous wave radar system by Wagner et al. [10] was used to record a 50-word
corpus from 2 speakers, which was then classified by a recurrent neural network with a mean
speaker-dependent accuracy of 99.17%. More recently, non-conventional sensing modalities
also showed promising results, focusing on the portability feature and developing wearable de-
vices. Zhang et al. [11] applied acoustic sensing of the speaker’s skin deformation during speech
to classify between 31 isolated commands recorded by 12 speakers with 95.5% accuracy using
deep convolutional neural networks. Sun et al. [12] sensed the speaker’s ear canal deformation
using earphones and were able to achieve 93% recognition accuracy using deep convolutional
neural networks in a 50-word corpus in a multi-speaker setting (50 total speakers).

The performance of OPG-based systems in command word recognition was evaluated by
our group in two previous studies. Stone and Birkholz [6] used the electro-optical stomatogra-
phy (EOS) technique, which consists of a combination of electrical contact sensors and optical
distance sensors mounted in a pseudopalate, to classify two corpora: one consisting of 10 digits
from "Null" to "Neun" (German words for "zero" and "nine"), and one consisting of the 30 most
common German words (10 adjectives, 10 nouns and 10 verbs). Both corpora were recorded by
4 native German speakers. The study performed command word recognition in a single speaker
setting (accuracies between 97% and 99.5%) and in a leave-one-speaker-out setting (accuracies
from 56% to 62%), that is, testing the system with data from a complete unseen speaker. The
neural architecture used was a recurrent neural network composed of a single bidirectional long
short-term memory (BLSTM) layer. Possamai de Menezes et al. [7] used the same OPG de-
vice as the present study and a 40-word corpus (union of both corpora used in [6]) recorded
by one speaker to achieve a 98.38% command word recognition accuracy. This result was ob-
tained with a 5-fold cross validation of a dynamic time warping (DTW)-based pattern matching
algorithm.

The present study presents itself as an expansion of our previous research on OPG com-
mand word recognition to compare the performance of our newly designed OPG2023 system
with former work. Additionally, an ablation study of different sensing locations in the palate
is conducted with the aim of guiding the development of future versions. In this regard, the
motivation is to investigate which (sub)set of the 15 optical sensors provides the optimal classi-
fication performance while keeping the device as simple as possible.

2 Method

An extended corpus of 100 words was set in order to set a more difficult task. Audio and
articulatory data were recorded by 4 individuals. The articulatory data was then used to train a
neural network with it.

2.1 Articulatory recording

The self-developed optopalatographic device "OPG2023" was used to record the articulation.
Its sensors consist of laser-phototransistor-pairs and are measuring the reflected light from an
object (here tongue and lips). Fifteen sensors are placed on one pseudo palate and are positioned
as seen in Figure 1 to record important articulatory areas of the tongue and lips. The current
induced by the incoming light intensity is measured with an 18 bit ADC. The dependency
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between the distance and the light intensity is shown in Figure 2. OPG2023 records with a 100
Hz sampling rate and it has a mechanism for ambient light compensation. A built-in acoustic
buzzer on the device can be used for synchronizing the audio and articulatory recordings.

Figure 1 – Sensor positions on the artificial
palate. The colour coding means: green - lip
sensors, yellow - midsagittal tongue sensors,
blue - lateral tongue sensors.

Figure 2 – Example of a tongue-distance-
curve (from [13], edited).

2.2 Corpus, subjects and experimental procedure

The corpus is composed of three different sources: It contains 80 German words from two
former mentioned studies [6, 10]. Additionally, 20 English words (see Table 1) were added for
the potential usage in another task.

Table 1 – Set of added command words. The IPA transcriptions were taken from [14].

Robot command items

Spot sp6t tongue t2N faster fa:st@ backward bækw@d

start stA:t off 6f slower sloU@ sneak sni:k

stop st6p shutdown "S2tdaUn left left walk wO:k

hello h@"loU on 6n right raIt run r2n

manual mænju@l no noU forward fO:w@d sit sIt

Four healthy male subjects (S1: fluent German speaker, S2 - S4: native Germans) with
the ages 30-45 years, who gave informed consent, were recorded in an audio studio. Everyone
used their own individually manufactured OPG pseudo palate. Articulatory and audio data were
recorded by using the software Articulatory Data Recorder 2 (ADR2, described in more detail
in [7]). Figure 3 depicts the recording setup and Figure 4 the use of it. Each subject performed
10 repetitions of all 100 words, which were recorded in one or two sessions. The corpus was
shuffled in each repetition. In total, a dataset of 4000 examples was acquired (100 words × 10
repetitions × 4 subjects). Examples of the recorded articulatory data are shown in Figure 5.
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Figure 3 – Recording setup: laptop with
ADR2, OPG2023 and microphone.

Figure 4 – Usage of the setup during record-
ing.

Figure 5 – Repetitions of the words "Dachstuhl" and "Nähe" by all 4 speakers represented by the ADC
values of the 15 OPG sensors. High ADC values mean more proximity to the OPG artificial palate.
Note that each word is realised with a similar pattern, despite coming from different speakers.

2.3 Neural network architecture

The command word recognition experiments were carried out using the raw ADC values recorded
by OPG2023 as input, and the 100 words in the corpus as target labels.

For comparison reasons, the same neural architecture and training parameters as in [6] were
used. The chosen architecture is composed of a BLSTM layer, followed by a fully connected
and a log softmax layer. Table 2 presents the used hyperparameter values. For each evalua-
tion, 30 random-search hyperparameter optimization runs were performed. Prior to training, 30
random hyperparameter sets were generated and used consistently across this study. The best-
performing hyperparameters for all evaluations are available on https://vocaltractlab.

de/index.php?page=birkholz-supplements.
We performed single speaker and leave-one-speaker-out evaluations, as in [6]. In addition,

we also performed a multi-speaker evaluation, with data from all 4 speakers considered together
as a single dataset. Table 3 describes the composition of training, validation and test sets for
each type of evaluation. Normalisation of the OPG input data was done according to a MinMax

strategy, compressing the signal of each sensor in the 0 to 1 range. Each sensor was normalised
individually and based on the statistics (minimum and maximum values) of the training set.
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Table 2 – Description of the hyperparameters of the neural architecture.

Hyperparameter Optimized Fixed value Value / value range

Batch size X
{

5,10,20,25,50
}

BLSTM layer hidden neurons X
{

100,101, ...,255,256
}

BLSTM dropout rate X
{

0.2,0.3, ...,0.8,0.9
}

Learning rate X 0.01
Max. number of training epochs X 500

Patience for early stopping X 20
Loss function X Negative Log Likelihood

Optimizer X AdamW

Table 3 – Composition of training, validation and test sets for the three different evaluations. All sets
within the same evaluation are disjoint and stratified in relation to the target labels.

Evaluation
Training set Validation set Test set

Total words Speakers Total words Speakers Total words Speakers

Single speaker 800 1 100 1 100 1
Leave-one-speaker-out 2400 3 600 3 1000 1

Multi-speaker 3200 4 400 4 400 4

For each type of evaluation, an ablation study was carried out by removing the lip and/or
the lateral sensors. The neural networks were developed using the PyTorch library [15].

3 Results and discussion

The results of the three types of evaluations are shown in Tables 4 and 5. The following subsec-
tions will cover the command word recognition accuracies obtained using all sensors and how it
compares to the state of the art in the literature, as well as the ablation study with lip and lateral
sensors.

3.1 Command word recognition

The obtained single speaker and leave-one-speaker-out accuracies will be discussed using the
study of Stone and Birkholz [6] as benchmark, which is the most direct comparison to this study,
as the same neural architecture, the same number of speakers and a very similar recording device
were applied.

The accuracies of the "best" test speaker obtained in this study are in a similar range than
those from [6]: 93% and 59.70% from this study against 98.33% and 63.67%, for single speaker
and leave-one-speaker-out evaluation, respectively. On the other hand, the mean accuracies
(averaged across all 4 speakers) obtained in this study are in a somewhat lower range than those
from [6]: 81.25% and 47.93% from this study against 97% and 56.17%, for single speaker and
leave-one-speaker-out evaluation, respectively. The higher mean accuracies obtained by Stone
and Birkholz [6] are higher than those obtained in this study probably due to two main reasons:
the higher difficulty in using a corpus of 100 words and the poor performance of speaker 4 here
in comparison to the other 3 speakers, which could be considered an outlier. After inspection
of the data recorded by speaker 4, no visible measurements errors besides a high base value of
one lip sensor (S12) were observed and the data was kept in the analysis.

The results here can also be compared to [7], where a single speaker command word recog-
nition accuracy of 98.38% was achieved. This comparison is not as direct as the previous one:
despite the exact same measuring device (OPG2023) was used, their corpus was smaller (40
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Table 4 – Command word recognition accuracies obtained for single speaker and leave-one-speaker-out
evaluations. The right portion of the table shows the mean and standard deviation (STD) values for each
sensor set, as well as the absolute and relative differences in mean accuracy (∆ Ablation) compared to
when all sensors are used.

Single speaker

∆ Ablation
Sensor set S1 S2 S3 S4 Mean STD Absolute Relative

All sensors 89.00% 86.00% 93.00% 57.00% 81.25% 14.22% - -
No lip 90.00% 78.00% 90.00% 46.00% 76.00% 18.00% −5.25% −6.46%

No lateral 87.00% 82.00% 91.00% 9.00% 67.25% 33.78% −14.00% −17.23%
No lip/lateral 88.00% 81.00% 90.00% 50.00% 77.25% 16.08% −4.00% −4.92%

Leave-one-speaker-out

∆ Ablation
Sensor set S1 S2 S3 S4 Mean STD Absolute Relative

All sensors 56.90% 53.80% 59.70% 21.30% 47.93% 15.51% - -
No lip 43.90% 40.40% 54.30% 20.60% 39.80% 12.21% −8.13% −16.96%

No lateral 51.40% 18.20% 16.00% 13.50% 24.78% 15.46% −23.15% −48.30%
No lip/lateral 45.10% 36.20% 55.10% 25.00% 40.35% 11.10% −7.58% −15.81%

Table 5 – Command word recognition accuracies obtained for the multi-speaker evaluation, and the
absolute and relative differences in accuracy (∆ Ablation) obtained when different sensor set were used.

Multi-speaker

All sensors No lip No lateral No lip/lateral

All speakers 90.25% 88.00% 88.50% 80.75%
∆ Ablation (absolute) - −2.25% −1.75% −9.50%
∆ Ablation (relative) - −2.49% −1.94% −10.53%

words) and a neural network was not applied.
Considering multi-speaker evaluation, our results stand in the same range as results ob-

tained using different sensing modalities and neural architectures. The 90.25% accuracy from
this study is most comparable with the 90.67% from Wu et al. [9], since the used corpora have
the same size of 100 words. With smaller corpora, Zhang et al. [11] and Sun et al. [12] achieved
95.5% (31 words) and 93% (50 words), respectively.

3.2 Ablation study

The effect of removing the lip and/or the lateral sensors from the input data differed between
the types of evaluation. In every evaluation, the removal of one or both sensor sets always
resulted in a decrease in accuracy. The decreases in the multi-speaker evaluation were intu-
itively stronger when less articulatory information was available: removing both lip and lateral
sensors resulted in a 9.50% accuracy decrease, whereas removing either lip or lateral sensors
individually decreased accuracy by 2.25% and 1.75%, respectively.

However, in single speaker and leave-one-speaker-out evaluations, the stronger accuracy
decreases occurred unexpectedly when only the lateral sensor was removed. This has two
causes: the considerably worse performance achieved with data from Speaker 4, an outlier in
comparison to the other 3 speakers, and the lower accuracies achieved when only lateral sensors
were removed, in comparison to other sensor sets, for speakers 2, 3, and 4 (the first two only in
the leave-one-speaker-out evaluation). This latter cause can be attributed to model underfitting,
as none of the 30 hyperparameters sets resulted in accuracies if not equal, at least similar to the
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case when neither lip nor lateral sensors were used.
In the single speaker evaluation, if only speakers 1, 2, and 3 are considered, the mean accu-

racies become 86.00%, 86.67% and 86.33% without lip, lateral and both lip and lateral sensors,
respectively. These are more intuitive results, showing no sensible differences when different
sensor regions are removed from the input data. In the leave-one-speaker-out evaluation, how-
ever, this trend persists even if Speaker 4 is not considered, as speakers 2 and 3 showed similar
results.

To summarize, every sensor region investigated in the ablation study has a positive influence
on the recognition accuracy, as the accuracy with all 15 sensors was in all cases the highest.
Additionally, the presence of more speakers in the dataset seems to reduce the effect of the
removal of individual sensors sets, either lip or lateral.

4 Conclusions

This paper presents the first command word recognition study using OPG2023 and data from
multiple speakers. The obtained multi-speaker results are in the same range as other state-of-
the-art SSI-based systems for command word recognition. This study, however, has consider-
ably less speakers than most of these studies. Additionally, the multi-speaker accuracies were
higher than those obtained in the single speaker evaluation, signaling potential for improve-
ments if data from more speakers is added.

The ablation study with lip and lateral sensors suggested some conclusions. Despite there
is a decrease in accuracy when lip and lateral sensors are not considered, the possibility of
developing future versions of OPG2023 using less optical sensors could be explored. On the
other hand, lip and lateral sensors seem to be important for generalization of recognition systems
with multiple speakers. As future recordings with more speakers are a possible next step, these
additional sensors should be considered.
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