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Abstract: The use of local public transport requires the barrier-free purchase of
a ticket. Travellers who are not proficient in the local language benefit from a
multilingual human(ticket)machine voice interaction. This paper presents a nearly
parallel audio dataset with 13218 annotated user queries from 20 speakers for En-
glish, German and Dutch. The domain-specific speech corpus can be understood
as an evaluation dataset for future research in Spoken Language Understanding
(SLU) and thus, it enables researches to improve the quality of human-machine
interaction applications. Furthermore, we compare the SLU performance of differ-
ent compositions of Automatic Speech Recognition (ASR) and Natural Language
Understanding (NLU) models in baseline experiments on different test datasets.

1 Background

Public Transport (PT) Information Systems realized through Spoken Dialogue Systems (SDS)
[1] are valued by blind people [2] and can serve non-native speakers to obtain information
regarding PT [3]. In this work, we consider a voice-enabled ticket vending machine (TVM) in-
stalled in transport hubs such as bus or train stations for requesting PT information or buying a
ticket. To make the use of PT more attractive and easier accessible for diverse customer groups,
as encouraged by [4], [5] such a voice-enabled TVM should not only be able to adapt to differ-
ent languages, but also to operate under domain-specific ambient noises like departing busses,
arriving trains or chattering people. In addition, the SDS should be efficient, e.g. using low rank
factorization methods or 6 hardware accelerators [7]. Finally, data privacy constraints needs to
be applied, such as proposed by, e.g., 8. All together this makes the task challenging. To the
best of our knowledge there exists no SLU corpus that allows multi-lingual voice interaction
with a TVM, where user’s speech is disturbed by environmental sounds. The contribution of
this work is as follows:

• We publish1 a multilingual SLU dataset with intent and slot annotations (incl. ASR tran-
scriptions) for the PT domain where users interact with a TVM while being exposed to
environmental noises, such as busses or trains passing by, and chattering people.

• We present baseline results of SLU experiments for different speech recording scenarios.
The SLU architectures are a composition of Automatic Speech Recognition (ASR) mod-
els (variants of Whisper [9] and Wav2Vec2 [10]) and state-of-the-art Natural Language
Understanding (NLU) models available in the OpenSLU framework [11] for joint Intent
Detection (ID) and Slot Filling (SF).

The corpus can be used as an evaluation data set to investigate multi-lingual SLU for German
and English, Dutch and Flemish. For the latter two languages, only intent labels are annotated,
the slot labelling is in progress.

1More information about access to the dataset: https://github.com/M4R14NO/NoiSLU
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Table 1 – Number of spoken utterances for different recording types (Clean Speech, Loud-
speaker Speech, Re-Recordings, Outside) and total number of recorded hours per language.

Language CS LS RR OUTS Total (hours)

German 1414 307 678 59 2458 (2,7 h)
English 1437 242 635 484 2798 (3,1 h)

Dutch & Flemish 628 0 628 0 1256 (1,4 h)

Total 3479 549 1941 543 6512 (7,2 h)

Table 2 – Speaker Mother Tongue Statistics (n=20).

Female Male German English Dutch Other

45% 55% 45% 15% 15% 25%

2 Method

The data collection was carried out in two stages: The goal of phase (1) was to generate an
NLU text corpus D text consisting of user utterances for natural interaction with a TVM in four
different languages. In phase (2), we invited 20 volunteer speakers for speech recordings of a
subset Daudio of the original text corpus D text under different recording conditions.

2.1 Collection of Annotated Text Corpus

To identify an initial set of domain-specific user intents I0, we examined the existing touch
interaction possibilities of a TVM of Ingolstadt’s local public transport company. To determine
a first set of relevant slot values, the price list and timetable from the local service provider
served as a reference. An iterative process of writing down potential user utterances in German
and refining the set of intent labels has led to the current set I of intents, see Table 3. For
labelling the utterances D text with slots, we used the open-source tool Rubrix2. In total, there
are 23 unique intents and 9 different slot labels. The slot tags are provided in the BIO format.
The utterances were first collected in German and machine-translated to English. The obtained
English dataset D text

EN has been expanded by a native speaker. A subset of the German text data
D text

DE was translated to both Flemish and Dutch (→ D text
NL ) by a Flemish mother tongue speaker,

but these are not yet annotated with slots.

2.2 Audio Data Collection

A subset of audio samples for D text was obtained in 3 steps: (1) we recorded ambient noises at
Ingolstadt’s main and north train station, followed by (2) speech recordings with 20 speakers
in a semi-anechoic chamber. Three speakers participated in outside recordings. Finally, (3) we
created re-recordings of previously collected clean speech and ambient noises. We categorize
these recordings as follows:

1. Ambient noise recordings. We collected ambient noises at Ingolstadt’s north train sta-
tion using a Zoom H6 field recorder. At this highly frequented transport hub we obtained
a wide range of background noises, ranging from passing trains and busses to chattering
people next to TVMs.

2https://rubrix.readthedocs.io/en/v0.4.1/
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2. Speech Recordings in- and outside. We recorded 20 volunteer speakers in a semi-
anechoic chamber, where each participant was asked to read aloud a subset of utterances
from D text. The Lombard Effect [12] was considered by playing back ambient noises in
two different ways: In the first scenario, speakers listened to ambient noises over a head-
set while reading aloud utterances, resulting in clean speech (CS). In a second recording
setup, background noises were played back over a pair of loudspeakers next to the partic-
ipant’s screen, resulting in loudspeaker disturbed speech (LS). Additionally, three speak-
ers were recorded outside next to a TVM at the train station Ingolstadt Nord, resulting in
outside speech (OUTS).

3. Re-Recordings of Clean Speech and Ambient noises. We gathered more noisy speech
recordings as follows: Both, (CS) and environmental sounds from the previous steps were
played back and recorded simultaneously in the semi-anechoic chamber to obtain noisy
re-recordings (RR) at different ambient noise volumes.

Table 1 shows overall number for English, German and Dutch Recordings. However, for 659
German and 682 English recordings there exist recordings from 5 other microphones (4 of them
from a microphone array), summing up to additional 6706 speech recordings (not included in
the table statistics). In total, we obtained 13218 recordings from three different microphones.

Table 3 – General statistics about most of the spoken queris for selected intents. The displayed
intents make up 89,6 percent of all English vocalizations.

Intent % of utterances ∅ slots/utterance ∅ tokens/utterance

EN DE NL EN DE NL EN DE NL

SelectStation 18.17 13.74 6.00 1.09 1.09 0.0 5.99 4.35 5.36
SelectDate 16.22 15 5.74 1.48 1.6 0.0 3.58 3.01 2.98
GetTicketprice 13.17 13.52 3.48 1.63 2.37 0.0 8.26 6.36 6.26
SetTicketAmount 11.61 10.87 6.13 1.33 1.74 0.0 4.70 3.76 4.17
RequestTickets 9.96 9.3 2.52 2.88 2.9 0.0 7.83 6.81 7.62
ShowRouteToStation 5.65 3.35 1.78 1.01 1.21 0.0 7.65 6.19 6.00
FindConnection 4.74 4.57 2.22 1.98 1.85 0.0 5.79 5.07 4.92
AskForDiscount 4.09 4.30 2.70 1.07 0.91 0.0 6.15 5.41 5.13
GetDepartureTimes 3.22 1.61 0.48 2.35 2.14 0.0 7.24 6.70 6.91
BrowseTimetable 2.74 3.13 1.74 1.00 1.10 0.0 3.78 3.39 2.90

3 Evaluation

In this section, we present first SLU results on our dataset. The SLU models are a composition
of different ASR and NLU models. We did not conduct ASR training or adaptation on the
dataset. To detect intent and slots, we used 3 different state-of-the-art NLU models available in
the open-source toolkit OpenSLU by Qin et al. [11].

3.1 ASR Experiment Setup and Baseline Results

The quality of the utterance transcription has a crucial influence on the downstream NLU task
performance. To incorporate this dependency into our evaluation, we use different ASR model
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setups to create transcriptions for the English and German data. We use five different Whisper
models of sizes tiny, base, small, medium and large. Whisper is an end-to-end speech recognizer
which was trained on 680,000 hours of multilingual and multitask data [9]. Since Whisper can
handle various languages, we use the same models among both languages. We further employ
XLSR-53 [13] models for English and German. Each of them was fine-tuned on the respective
Mozilla Common Voice dataset and released by Grosman [14]. In addition, these two models
were used with and without a language model. To determine the accuracy of the aforementioned
ASR systems in the target domain, we evaluate them on our ticket machine recordings. Figure 1
gives an overview of the word error rates (WER) for the different model setups, showing that
Whisper large provides the best transcription quality among both languages.

Figure 1 – Comparison of word error rates (WER) for every ASR model setup. The data which
was used consists of all German and English speech recordings from Table 1.

3.2 NLU Experiment Setup and Baseline Results

We utilized the open-source framework OpenSLU by Qin et al. [11] to conduct baseline NLU
experiments for joint Intent Detection and Slot Filling for English and German. In the exper-
iments, we selected the existing recipes of 3 models where good results were obtained on the
ATIS dataset: the first two models, DeBERTaV3 by He et al. [15] and JointBERT by Chen et al.
[16] are pretrained models, whereas the third model, StackPropagation by Qin et al. [17], is non-
pretrained. For NLU training with English data, we used the encoder models bert-base-uncased,
Microsoft’s DeBERTa-v3-base, and GloVe [18], respectively. For an NLU performance com-
parison between German and English, we used the JointBERT architecture with dbmdz/bert-
base-german-uncased as German encoder model. The DeBERTaV3 and JointBERT decoder
consist of linear classifiers for both intent and slot detection. The StackPropagation model uses
auto-regressive Long-Short-Term-Memory (LSTM) classifiers for intent and slot recognition.
Evaluation metrics. The intent detection performance is evaluated by means of weighted av-
erage F1 score (f1), precision (prec) and recall (rec) scores due to class label imbalance. We
further make use of a strict evaluation method for the slot filling task, namely the strict evalua-
tion scheme implemented in the PyPi Package nervaluate from MantisAI [19]. The reason for
this is the intended usage of the NLU output. The recognized intent and slots will be used to
query the database from the local traffic provider. In this scenario, even a slight slot detection
error can lead to an incorrect query and hereafter to bad user experience. According to this
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Figure 2 – Intent detection f1-score based on
different WERs. Reported numbers are for all
speech types (English).

Table 4 – Number of unique sen-
tences (texts) and audio vocaliza-
tions for NLU train, dev and test
splits with an average utterance
duration of 4.1 seconds.

Split
# texts # audios

EN DE EN DE

train 610 616 1928 1704
dev 77 78 233 218
test 202 200 637 536

total 889 894 2798 2458

protocol, slot recognition is correct if both the actual string and the slot type match the refer-
ence. Table 4 shows general utterance statistics for the train/dev/test split used in the English
and German NLU model training.

3.2.1 Influence of different ASR Models on Intent Detection

The influence of the transcription quality on the intent detection performance is illustrated in
Figure 2. The plot clearly shows for all three models, that a higher WER has a negative impact
on the NLU performance. This is as expected and highlights the importance of using an ASR
component, which has a high transcription accuracy in the target domain.

3.2.2 SLU Results: Gold Transcriptions vs. ASR Input

Table 5 – Comparison of NLU model performance with and without preceding ASR model.
Used ASR model: Whisper Large V2. The symbol x refers to gold transcriptions with zero
word error rate (wer).

NLU Model
ASR Intent results in % Slot results in %

wer pre rec f1 pre rec f1

StackPropagation
x 89.05 88.23 87.46 84.73 84.21 84.47

10.86 88.67 87.60 86.83 75.98 75.89 75.93

DeBERTaV3
x 97.46 96.86 96.87 62.15 64.50 63.30

10.86 95.23 94.51 94.37 56.38 58.38 57.37

JointBERT
x 92.24 92.62 92.03 52.48 67.44 59.03

10.86 90.38 90.42 89.74 49.95 62.67 55.59

Table 5 compares the performance of NLU models (StackPropagation, DeBERTaV3, and
JointBERT) using gold transcriptions and ASR outputs from Whisper Large V2. Our results
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show that StackPropagation performs the best in slot filling, and DeBERTaV3 performs the
best in intent recognition. Notably, all models have a drop in performance when WER>0 is
introduced for both intent recognition and slot filling tasks. Slot filling tasks appear especially
sensitive to the increase in WER due to the specific nature of slot filling where erroneous inputs
have a greater impact than the broader task of intent recognition. Additionally, the decline in
results across models when WER>0 further motivates the development of more error-tolerant
NLU models, especially for situations where ambient noise exists such as a TVMs.

3.2.3 SLU Results for different Recording Types

Table 6 shows a high difference in slot filling performance between StackPropagation NLU
model and the two pretrained models (DeBERTa, JointBERT). This is caused by different tok-
enization strategies from the respective NLU recipes. Unknown words are divided into subword
tokens in the pretrained cases. Hence, the predicted slot label sequences are longer than the ref-
erence slot sequences for utterances with domain-specific vocabulary unknown to the pretrained
embeddings. As we expected, m(CS)< m(OUTS)< m(RR) for metrics m ∈ {WER,Slot-f1}.
This means, the artificial re-recording test dataset is harder to recognize than our realistic out-
side recordings for both, the speech and slot recognition systems. But interestingly, the intent
detection results for realistic outside speech recordings is not affected by the latter fact. In fact,
the best intent detection results are obtained on the outside speech recording test data.

Table 6 – SLU results for English Test data with preceding ASR component (Whisper Large
V2) for different recording types.

Rec. # NLU ASR Intent results in % Slot results in %

Type utts model wer pre rec f1 pre rec f1

StackProp 90.48 90.06 88.63 81.30 82.02 81.66
CS 171 DeBERTa 8.98 95.73 95.91 95.58 59.34 62.72 60.98

JointBERT 92.00 91.81 91.29 52.76 67.11 59.07

StackProp 91.04 90.55 89.64 75.28 75.71 75.49
OUTS 127 DeBERTa 10.50 98.85 97.64 97.8 58.66 59.32 58.99

JointBERT 95.39 95.28 94.72 46.29 59.89 52.22

StackProp 83.68 85.00 83.56 75.84 75.42 75.63
RR80 140 DeBERTa 16.69 90.04 90.71 89.45 55.38 57.54 56.44

JointBERT 86.21 85.71 84.71 50.91 62.57 56.14

3.2.4 SLU Performance Comparison: English vs. German

From the results in Table 7 we can observe that the ASR model Whisper large yields lower
word error rates for both recording scenarios (CS, RR). However, the final SLU performance
in terms of intent detection and slot filling metrics is better for the German language, given a
specific recording scenario. This is due to code switching: the English utterances contain lots
of German slot values. The results of the loudspeaker disturbed speech recordings (referred to
by LS in Table 1) are excluded as there are only 49 utterances in the test split. However, the
numbers are close to the results presented for the OUTS speech type in Table 6.
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Table 7 – Comparison of Jointbert NLU performance for different languages (DE, EN).
Recording types are CS and RR. The preceding ASR component is Whisper large.

RecType Language
ASR Intent Slot Number
wer f1 (%) f1 (%) of utts.

CS English 8.98 91.29 59.07 171
German 13.45 93.19 60.18 161

RR English 16.69 84.71 56.14 140
German 23.12 91.23 57.14 144

4 Discussion and Conclusion

The first baseline results indicate that a composition of state-of-the-art ASR and NLU models
yield comparable results to OpenSLU baseline results on the ATIS dataset. Due to the fact
that the pretrained NLU model recipes use a different tokenizer than StackPropagation, the slot
filling results might be updated after a tokenization alignment3. The NLU corpus might be
further extended, e.g. via Large Language Model paraphrasings for each intent. Also, models
based on Generative Adversarial Networks could be used to generate fake user queries.
Overall, the NoiSLU corpus contains 13218 (nearly parallel) annotated utterances for German,
English and Dutch/Flemish with intent and slot annotations for the PT domain where users
interact with a TVM while being exposed to environmental noises.
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