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Abstract: Modern intervention planning in psychotherapies may benefit from pre-
dicting process relevant psychotherapy constructs by automated speech analysis.
One essential step is the extraction of relevant linguistic speech markers by ASR en-
gines, which because of highly sensible data, work offline. We analyze transcription
errors from NeMo, Whisper, and Wav2Vec2.0, focusing on their impact on linguis-
tic markers usually requiring high quality transcripts. By utilizing part-of-speech
tagging, we examine error occurrences among different word types. The Linguistic
Inquiry and Word Count (LIWC) software aids in extracting markers. We highlight
challenges in transcribing spontaneous speech, prevalent in therapy, and compare
results with the Mozilla CommonVoice dataset, which features read speech.

1 Motivation

Modern psychotherapy strives for evidence-based situational decisions on interventions. Au-
tomated intra-session speech analysis has the potential to support this by gathering relevant
psychotherapeutic process constructs [1, 2, 3]. For instance, in our pilot study, ASPIRE, we are
working on the prediction of the quality of the psychotherapeutic alliance, known as the most
relevant predictor of psychotherapy outcome [4], utilizable by automated analysis of speech
content and prosodic-acoustic markers in patients’ and therapists’ speech. Especially for analyses
of the speech content, the correctness of the transcription is crucial. Furthermore, the use of
manual transcription is time-consuming and not feasible for the intended project. Using online
cloud solutions is not appropriate for highly sensitive data from psychotherapies due to privacy
issues. Therefore, a relevant step towards the development of reliable intra-session speech
analysis is to extract relevant linguistic speech markers by offline Automated Speech Recognition
(ASR) engines. Up to now, automatic transcription entails high error rates when recognizing
spontaneous speech, although Automatic Speech Recognition (ASR) systems have undergone
continuous evolution in recent years [5].

This success is attributed to the adoption of sophisticated deep network architectures,
featuring efficient training methods for both acoustic and language modeling. Presently, deep
convolutional neural network architectures are prevalent for acoustic modeling, while variants of
long-short-term memory networks are employed for both acoustic and language modeling [6].

In the context of psychotherapeutic alliance, not only the pure Word Error Rate (WER) is
of interest, but also the correctness of the linguistic analysis. To evaluate linguistic measures,
we used the Linguistic Inquiry and Word Count (LIWC) software, which categorizes (written)
speech. Those markers are influenced by the automatic transcription to varying degrees, which
are explored in our work.
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2 Related Work

Regarding the WER, numerous studies have explored the performance of various cloud-based
ASR systems using subsets of the Switchboard telephone speech dataset for English benchmark-
ing [7]. Recent cloud-based ASR systems demonstrated WER values as low as 10%-5% WER:
IBM Research reported a WER of 5.1% on the Switchboard Hub5 2000 evaluation test with their
ASRU’17 system, incorporating unsupervised Language Model (LM) adaptation[8]. Similarly,
Microsoft Research achieved a 5.1% WER on the NIST 2000 Switchboard task, employing
ngram rescoring [6]. Google’s cloud-based ASR system, although lacking Switchboard dataset
results, achieved 6.7% WER on voice search and 4.1% WER for a dictation task using an internal
traffic application dataset [9]. But it is apparent that all this data comprises command-style data
or dictation-style data, usually very different from the data used in our ASPIRE study. Several
studies also conducted research regarding the ability to identify the context on the ASR-genereted
text. According to Wirth and Peinl, 9.40% of German ASR errors are deemed negligible, while
11.95% are noncontext-breaking. However, a significant majority, comprising 19.01% of errors,
is identified as context-breaking. An additional 19.82% of errors involve names, anglicisms, or
loan words, as reported in [10]. This aligns with the observation that words appearing at low
frequencies in the language model corpus or those entirely outside the vocabulary are prone
to misrecognition by ASR engines. Ma et al. also corroborate this finding, highlighting the
substantial challenge posed by misrecognizing words of great importance, particularly proper
names, within specific application contexts [11]. Interjections present another difficulty for ASR
engines, since Siegert et al could only detect one German ASR engine (IBM) that could recog-
nize nearly all of those filler words [12]. In the English language, monosyllable function words
contribute most to the WER. Content words, however, which rarely appear in the training corpus,
are also misrecognized most of the time [13]. It has also been shown that spontaneous speech is
harder to recognize than read speech, Nakajima et al. detect a deterioration in detecting spoken
Japanese when switching from read to conversational speech. For content words, they observe
an even higher deterioration rate (mean 36.6%) than for function words (mean 28.0%). [14]
Similar difficulties in detecting spontaneous speech have been observed by Silber-Varod et al.
who report a higher WER for spontaneous dialogues than for frontal lectures [15].

3 Methods

We used 3 different ASR engines to transcribe the audio samples from two different databases,
which will be elaborated upon in the following:

3.1 Datasets

Ulm State of Mind in Speech (USoMs) database: The first database we used is the USoMs
database. It consists of approximately 1k recordings of spontaneous speech with psychotherapy
context and their manually created transcriptions, which have been used as a gold standard. The
speakers are not patients, but volunteers who tell short stories from their personal experience [16].
The corpus consists of recordings of younger and older people, but because the recordings of the
older people were largely incomplete, we concentrated on the sub-corpus of the younger people
and extracted a subset consisting of 70 of these recordings, which are fully transcribed.
Mozilla CommonVoice 7.0 (MCV7.0): The German Mozilla CommonVoice database, in
contrast to the USoMs database, consists of read speech with no psychotherapeutical context.
Despite the absence of fillers like "ähm" in the non-spontaneous speech, the sentences comprise
partly everyday conversations and therefore contain words that are potentially hard to recognize
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for ASR engines, such as proper names of places or people. The designated subset for ASR
engine testing, labelled as "test," encompasses 30,569 different words. [17]
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Figure 1 – Word Length of CommonVoice (read) and USoMs (spont) dataset

As depicted in Figure 1, the vast majority of the words in both corpora are about 5 letters
in length, aligning with the principles of Zipf’s Law of abbreviation, which states that shorter
words appear more often than long ones. Additionally, it is evident that longer words are less
frequently used in spontaneous speech and more prevalent in read speech.

3.2 ASR-Engines

NeMo Conformer Transducer Model [18]: The autoregressive NeMo Conformer Transducer
Model, developed by NVIDIA, combines convolutional neural networks and transformer models.
It has been trained using supervised learning on a dataset comprising 2,300 hours of speech data.
Table 1 shows the exact databases the network has been trained and evaluated with.
Wav2Vec2.0 [19]: Unlike the NeMo model, Wav2Vec2.0 (we utilized the facebook/wav2vec2-
xls-r-1b model [20]) underwent training through self-supervised learning, without the use of
annotated data. Annotated data is only used for fine-tuning on the German language. The applied
datasets are listed in Table 1).
Whisper [21]: Whisper is a weakly supervised model, meaning that part of the training data
has been transcribed, but the majority of the data used in the training process is unlabelled. The
utilized Datasets are indicated in Table 1.

All models were evaluated on the Mozilla CommonVoice (MCV) data set, so that despite
different versions, the type of data remains the same (read speech) and the results are therefore
easily comparable.

Table 1 – Comparison of ASR Engines - Parameters, Databases and WER

NeMo Whisper Wav2Vec2.0
Parameters 120M 769M (medium) 1B

Training Databases MCV7.0
internet audios
and transcripts

MCV8.0

Multilingual
LibriSpeech

Multilingual
LibriSpeech

VoxPopuli
13,344k h of

German audio VoxPopuli

Multilingual TEDx
Evaluation Database MCV7.0 MCV9.0 MCV8.0

WER 4.93% 6.4% 10.95%
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4 Linguistic Evaluation

4.1 Linguistic Inquiry and Word Count - LIWC

The LIWC software simplifies the analysis of written language. Utilizing the German Dictionary,
the text can be systematically categorized into 100 distinct categories. The value for a category
indicates the proportion of words that correspond to this category [22]. These categories include
both grammatical evaluations so that e.g. the proportion of certain word types or tenses can be
calculated, as well as content-related evaluations with which the proportion of certain topics in
the text can be determined [23].

In addition to this evaluation method, there are 4 summary variables which, in contrast,
are not calculated as a percentage of the total number of words, but are based on standardized
values from the developers’ research. Percentiles between 1 and 99 are calculated from their
comparison corpora. Those four summary variables are [24] :

• Analytical Thinking: The Analytic value serves as an indicator of the prevalence of
analytical thinking in a speaker’s language, reflecting the proportion of words employed
that convey a sense of formality and logic. It provides insight into the articulate use of
words that embody a structured and rational discourse.

• Clout: Clout is used to indicate the social status and self-confidence of the person speaking
or writing.

• Authenticity: This value shows how honestly or authentically the person speaks: In-
dividuals with higher values typically express themselves more spontaneously, while a
lower Authentic score suggests a more thoughtful approach, where the speaker carefully
considers their words and observes themselves.

• Emotional Tone: Tone provides information about the general emotional tone of voice
and indicates whether it is more positive (for values above 50) or more negative (for values
below 50).

4.2 Part-of-Speech (POS)-Tagging

For POS-Tagging we used the "de_core_news_md" model from the spaCy python library [25],
which has an accuracy of 98.29%. Using a trained pipeline, the program predicts which POS-tag
(see Table 2 for an overview) is most fitting in the context of the sentence.

Table 2 – Explanation POS-Tags

Tag Explanation Tag Explanation Tag Explanation
INTJ interjection X other PROPN proper noun
NUM numeral AUX auxiliary DET determiner
PART particle PRON pronoun ADV adverb
ADJ adjective VERB verb SCONJ subordination

NOUN noun ADP adposition conjunction

5 Results

5.1 Word Error Rate

As depicted in Figure 2, the average WER (calculated using the jiwer python library) for each
model significantly increases in spontaneous speech compared to read speech. This aligns with
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t Whisper 7.83% 5.57% 1.59%
Wav2Vec2.0 15.2% 17.7% 0.8%

NeMo 7.6% 12.6% 1.1%
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Whisper 0.74% 6.91% 1.18%
Wav2Vec 0.89% 8.39% 0.76%

NeMo 0.36% 4.27% 1.16%

Table 3 – Percentages of error types (excluding
hits)

previous findings [14, 15] mentioned in section 2. Additionally, our findings reveal that NeMo is
the best performing model, while Wav2Vec2.0 exhibits the least favourable performance, which
also aligns with the WER provided by the developers (Table 1).

In Table 3 it is additionally shown that for Whisper and Wav2Vec2.0 the most prevalent error
type on spontaneous speech are deletions (DEL) followed by substitutions (SUB) and insertions
(INS) whereas for read speech substitutions are the most frequently occurring error type.

5.2 Influence of recognition mistakes on linguistic markers
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Figure 3 – Mean deviation of selected lingustic categories for each model on spontaneous speech (above)
and read speech (below).

As shown in Figure 3, analysis conducted on the NeMo transcripts have the smallest
deviations from the gold standard values. Interestingly, the performance is generally better
on spontaneous speech than on read speech for Whisper and Wav2Vec2.0. This observation
may be attributed to the characteristics of the datasets. Spontaneous speech transcripts are
longer compared to those of read speech, which involve only one sentence each. Consequently,
conducting LIWC analysis on spontaneous speech might yield more accurate results, as individual
words and errors have less significance in the context of longer texts.

While most categories of spontaneous speech do not exceed a deviation of 26%, the Analytic
category for the Wav2Vec2.0 model presents an exception with a deviation of 257.6%. This
could be explained by the fact that spontaneous speech generally results in very low analytic
values, and therefore even small deviations have a big impact in the overall category.

Furthermore, on read speech the Authentic value generally shows higher deviations from the
gold standard value than the other categories. This could be due to decreased spontaneity when
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reading, which amplifies the impact of mistakes in the ASR transcripts on this overall category.

5.3 Misrecognized Words in POS-tagging
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Figure 4 – Percentages of misrecognized words (selection) in automatically obtained transcripts

As shown in Figure 4 all word types show higher deviations for spontaneous speech than for
read speech. Significantly, interjections (abbreviations provided in Table 2) present the most
commonly misunderstood word types in spontaneous speech. This is attributed to the challenge
faced by most ASR engines in recognizing filler words, as indicated by [12]. In contrast, read
speech entirely lacks this category of words. This disparity can easily be explained by the
characteristics of both speech types, since interjections are typically not used in written text.

Further commonly misunderstood word types are unconventional terms labelled as X and
proper nouns. This coincides with the previously mentioned challenge, ASR engines face when
transcribe words that are rare or absent in the training dataset [10, 11].

6 Conclusion

Our findings reveal that offline ASR engines can be used to extract relevant linguistic markers
in sensible, spontaneous speech. However, some ASR engines are more suitable than others:
NeMo, which is the model with the lowest WER, also performs the best when extracting the
LIWC-markers, whereas Wav2Vec2.0 leads to higher deviations. Interestingly, even though the
WER on spontaneous speech is rather high, linguistic markers can still be extracted reliably,
partly even with a higher accuracy than on read speech.

35. Konferenz Elektronische Sprachsignalverarbeitung

208



References

[1] KUČERA, D. and M. R. MEHL: Beyond english: Considering language and culture in psy-
chological text analysis. Frontiers in Psychology, 13, 2022. doi:10.3389/fpsyg.2022.819543.
URL http://dx.doi.org/10.3389/fpsyg.2022.819543.

[2] CHEKROUD, A. M., J. BONDAR, J. DELGADILLO, G. DOHERTY, A. WASIL,
M. FOKKEMA, Z. COHEN, D. BELGRAVE, R. DERUBEIS, R. INIESTA, D. DWYER,
and K. CHOI: The promise of machine learning in predicting treatment outcomes in
psychiatry. World Psychiatry, 20(2), p. 154–170, 2021. doi:10.1002/wps.20882. URL
http://dx.doi.org/10.1002/wps.20882.

[3] KRÜGER, J., I. SIEGERT, and F. JUNNE: Künstliche Intelligenz für die Sprachanalyse in
der Psychotherapie – Chancen und Risiken. PPmP - Psychotherapie · Psychosomatik ·
Medizinische Psychologie, 72, pp. 395–396, 2022. doi:10.1055/a-1915-2589.

[4] FLÜCKIGER, C., A. C. DEL RE, B. E. WAMPOLD, and A. O. HORVATH: The alliance in
adult psychotherapy: A meta-analytic synthesis. Psychotherapy, 55(4), p. 316–340, 2018.
doi:10.1037/pst0000172. URL http://dx.doi.org/10.1037/pst0000172.

[5] DHANJAL, A. S. and W. SINGH: A comprehensive survey on automatic speech recognition
using neural networks. Multimedia Tools and Applications, 2023. doi:10.1007/s11042-023-
16438-y.

[6] XIONG, W., L. WU, J. DROPPO, X. HUANG, and A. STOLCKE: The Microsoft 2017
Conversational Speech Recognition System. In Proc. of the IEEE ICASSP-2018, pp. 5934–
5938. Calgary, Kanada, 2018.

[7] GODFREY, J. J., E. C. HOLLIMAN, and J. MCDANIEL: SWITCHBOARD: telephone
speech corpus for research and development. In Proc. of the IEEE ICASSP-1992, vol. 1,
pp. 517–520 vol.1. San Francisco, CA, USA, 1992.

[8] KURATA, G., B. RAMABHADRAN, G. SAON, and A. SETHY: Language modeling
with highway LSTM. In Proc. of the IEEE ASRU, pp. 244–251. Okinana, Japan, 2017.
doi:10.1109/ASRU.2017.8268942.

[9] CHIU, C., T. N. SAINATH, Y. WU, R. PRABHAVALKAR, P. NGUYEN, Z. CHEN, A. KAN-
NAN, R. J. WEISS, K. RAO, E. GONINA, N. JAITLY, B. LI, J. CHOROWSKI, and M. BAC-
CHIANI: State-of-the-art speech recognition with sequence-to-sequence models. In Proc.
IEEE ICASSP-2018, pp. 4774–4778. Calgary, Kanada, 2018.

[10] WIRTH, J. and R. PEINL: Automatic speech recognition in german: A detailed error
analysis. pp. 1–8. 2022. doi:10.1109/COINS54846.2022.9854978.

[11] MA, X., X. WANG, and D. WANG: Low-frequency word enhancement with sim-
ilar pairs in speech recognition. In 2015 IEEE China Summit and International
Conference on Signal and Information Processing (ChinaSIP), pp. 343–347. 2015.
doi:10.1109/ChinaSIP.2015.7230421.

[12] SIEGERT, SINHA, JOKISCH, and WENDEMUTH: Recognition Performance of Selected
Speech Recognition APIs – A Longitudinal Study, pp. 520–529. Springer International
Publishing, Cham, 2020.

35. Konferenz Elektronische Sprachsignalverarbeitung

209

https://doi.org/10.3389/fpsyg.2022.819543
http://dx.doi.org/10.3389/fpsyg.2022.819543
https://doi.org/10.1002/wps.20882
http://dx.doi.org/10.1002/wps.20882
https://doi.org/10.1055/a-1915-2589
https://doi.org/10.1037/pst0000172
http://dx.doi.org/10.1037/pst0000172
https://doi.org/10.1007/s11042-023-16438-y
https://doi.org/10.1007/s11042-023-16438-y
https://doi.org/10.1109/ASRU.2017.8268942
https://doi.org/10.1109/COINS54846.2022.9854978
https://doi.org/10.1109/ChinaSIP.2015.7230421


[13] HAHN, S., A. SETHY, H.-K. KUO, and B. RAMABHADRAN: A study of un-
supervised clustering techniques for language modeling. pp. 1598–1601. 2008.
doi:10.21437/Interspeech.2008-266.

[14] NAKAJIMA, H., I. HIRANO, Y. SAGISAKA, and K. SHIRAI: Pronunciation vari-
ant analysis using speaking style parallel corpus. In Proc. 7th European Confer-
ence on Speech Communication and Technology (Eurospeech 2001), pp. 65–68. 2001.
doi:10.21437/Eurospeech.2001-15.

[15] SILBER-VAROD, SIEGERT, JOKISCH, SINHA, and GERI: A cross-language study of
selected speech recognition systems. The Online Journal of Applied Knowledge Man-
agement: OJAKM, 9, pp. 1–15, 2021. doi:10.36965/OJAKM.2021.9(1)1-15. URL
https://doi.org/10.36965/OJAKM.2021.9(1)1-15.

[16] RATHNER, E.-M., Y. TERHORST, N. CUMMINS, B. SCHULLER, and H. BAUMEISTER:
State of mind: Classification through self-reported affect and word use in speech. In Proc.
Interspeech. 2018.

[17] ARDILA, R., M. BRANSON, K. DAVIS, M. KOHLER, J. MEYER, M. HENRETTY,
R. MORAIS, L. SAUNDERS, F. TYERS, and G. WEBER: Common voice: A massively-
multilingual speech corpus. In Proc. of the 12th Language Resources and Evaluation Con-
ference, pp. 4218–4222. ELRA, Marseille, France, 2020. URL https://aclanthology.
org/2020.lrec-1.520.

[18] GULATI, A., J. QIN, C.-C. CHIU, N. PARMAR, Y. ZHANG, J. YU, W. HAN, S. WANG,
Z. ZHANG, Y. WU, and R. PANG: Conformer: Convolution-augmented transformer for
speech recognition. 2020. 2005.08100.

[19] BAEVSKI, A., H. ZHOU, A. MOHAMED, and M. AULI: wav2vec 2.0: A framework for
self-supervised learning of speech representations. 2020. 2006.11477.

[20] GROSMAN, J.: Fine-tuned XLS-R 1B model for speech recognition in German. https:
//huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-german, 2022.

[21] RADFORD, A., J. W. KIM, T. XU, G. BROCKMAN, C. MCLEAVEY, and I. SUTSKEVER:
Robust speech recognition via large-scale weak supervision. 2022. 2212.04356.

[22] PENNEBAKER, J., M. FRANCIS, and R. BOOTH: Linguistic inquiry and word count (liwc).
1999.

[23] TAUSCZIK, Y. R. and J. W. PENNEBAKER: The psychological meaning of words: Liwc
and computerized text analysis methods. Journal of Language and Social Psychology,
29(1), p. 24–54, 2009. doi:10.1177/0261927x09351676. URL http://dx.doi.org/10.
1177/0261927X09351676.

[24] BOYD, R. L., A. ASHOKKUMAR, S. SERAJ, and J. W. PENNEBAKER: The development
and psychometric properties of LIWC-22. University of Texas at Austin, Austin, TX, 2022.

[25] HONNIBAL, M. and I. MONTANI: spaCy 2: Natural language understanding with Bloom
embeddings, convolutional neural networks and incremental parsing, 2017. To appear.

35. Konferenz Elektronische Sprachsignalverarbeitung

210

https://doi.org/10.21437/Interspeech.2008-266
https://doi.org/10.21437/Eurospeech.2001-15
https://doi.org/10.36965/OJAKM.2021.9(1)1-15
https://doi.org/10.36965/OJAKM.2021.9(1)1-15
https://aclanthology.org/2020.lrec-1.520
https://aclanthology.org/2020.lrec-1.520
2005.08100
2006.11477
https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-german
https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-german
2212.04356
https://doi.org/10.1177/0261927x09351676
http://dx.doi.org/10.1177/0261927X09351676
http://dx.doi.org/10.1177/0261927X09351676

