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Abstract: Recent neural text-to-speech (TTS) models are able to synthesize highly
natural speech signals using deep learning techniques. In practical applications, it
can be desirable to have explicit control over the prosody (speech rate, fundamen-
tal frequency, and energy) of the synthesized speech. Such controllability can be
achieved by adding prosody prediction modules, whose main purpose is to esti-
mate plausible prosody features for each phoneme in the text input. This explicit
modeling also allows for changing prosody features at inference time, consequently
enabling the adjustment of the prosody in the synthesized audio. In this paper, we
evaluate to which extent deliberate manipulation of such prosody features is re-
flected in the resulting speech audio. We focus particularly on changing the pitch
(i.e., fundamental frequency) while applying different normalization strategies.

1 Introduction

Todays state-of-the-art text-to-speech (TTS) systems usually consist of two main components:
Textual input, given as phoneme sequence, is first processed by the so-called acoustic model,
whose main task is to predict mel spectrograms, which implicitly encode the information about
how a text is uttered (including, e.g., duration of phonemes, speech melody). Since a text can
be spoken in many different ways, even by the same speaker, the mapping from textual input to
mel spectrograms is a one-to-many task. The second component is the neural vocoder which
takes mel spectrograms and converts them into time-domain speech waveforms. This mapping
is more unique since the mel spectrogram already dictates how a plausible speech waveform
should be structured.

For many practical applications, it can be desirable to have more fine-grained control over
the mel spectrogram prediction process of the acoustic model. A natural choice is to modify
the prosodic features which represent interpretable speech characteristics, such as phoneme du-
rations (speech rate), fundamental frequency (referred to as pitch in the following), and energy
(loudness). A successful approach to explicitly model these features is the extension of the
acoustic model by prosody predictors, which are trained jointly with the acoustic model. Train-
ing such an extended acoustic model requires the provision of ground-truth prosody features
which can be extracted from the speech samples in the training dataset using standard sig-
nal processing methods. This additional information eases the one-to-many mapping task and
leads to a disentangled internal representation of prosody and voice timbre. During inference,
where no ground-truth prosody features are available, the previously trained prosody predictors
take over the task to provide prosody information.

In the literature, there have been several proposals of acoustic model architectures as de-
scribed above. FastSpeech2 [1] and FastPitch [2] were introduced in parallel, extending the
popular FastSpeech [3] architecture with predictors for pitch and energy. FastTacotron [4] adds
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Figure 1 – Model overview with training and inference settings used in this paper. Subfigure (a) depicts
the architecture of our acoustic model based on a modified ForwardTacotron. For details, see Sec. 2.2.
Subfigure (b) illustrates the extraction of ground-truth prosody information from our training dataset,
details see Sec. 2.1. The acoustic model can be trained circumventing some of the prosody predictors.
Usage of ground-truth pitch and energy features is illustrated in (c) for training and (d) for inference.
Subfigure (e) shows inference with the full set of prosody predictors.

pitch and energy predictors to the ForwardTacotron [5] architecture. The main difference be-
tween these two model families is the usage of feed-forward Transformer blocks (FastSpeech,
FastSpeech2, FastPitch) vs. recurrent units (ForwardTacotron, FastTacotron).

To the best of our knowledge, only few publications address in detail the evaluation of the
prosody predictors’ effect on the actual prosodic features apparent in the synthesized speech.
One such example is the work of Mohan et al. [6], who propose a modification of Tacotron2 [7]
with pitch, energy, and duration predictors. The authors conduct an objective evaluation of the
prosody features’ entanglement by examining the effect of modifying one feature while keeping
the others fixed. This evaluation shows that modifications of the prosody features correlate with
the corresponding properties in the synthesized speech and that different prosody features can
be changed relatively independently of each other. However, their evaluation does not report
how accurately the desired modification is reflected in the synthesized speech audio.

In this paper, we try to address open questions from the papers discussed above: (1) Nor-
malization: In previous work, the prosody features are often normalized. In our experiments,
we use a multi-speaker training set and seek to find the optimal strategy with respect to feature
normalization. We investigate three variants: leaving the prosody features unnormalized, nor-
malizing them using statistics (mean and standard deviation) derived from the complete dataset,
or normalizing them using statistics derived for each speaker individually. As a main contri-
bution, we report how the normalization affects accuracy and pitch range of the synthesized
speech. Therefore, our secondary contributions are: (2a) Accuracy: We examine how much
control over the exact prosody characteristics in the synthesized audio samples is possible. In
particular, we focus on the control over pitch values and investigate how accurately the specified
pitch is reflected in the synthesized audio samples. This is relevant, for example, when giving a
user control over prosody features, to ensure that the specified and the actual pitch values corre-
spond as accurately as possible. (2b) Range of pitch control: We also investigate the influence
of the speaker-dependent pitch distribution in the training data on the possible extent of pitch
modification. We expect that specifying pitch values farther away from the average pitch of a
speaker leads to lower accuracies.
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2 Method

2.1 Data

For training the models in our experiments, we use an English dataset consisting of four speak-
ers: “female1” [8] (5.44 h), “male1” [9] (5.43 h), “female2” (2.22 h), and “male2” (2.14 h),
where the latter two are proprietary corpora recorded with professional voice actors. The dataset
comprises pairs of weakly aligned phoneme annotations and speech recordings. The recordings
are downsampled to a sampling frequency of 22 050 Hz before computing mel spectrograms
(with 80 bands, 256 samples hop size, 1024 samples block size). As indicated in Fig. 1b, we
extract ground-truth prosody features for each speech sample in our dataset. As a pre-requisite,
the weak correspondence between the phoneme transcriptions and the corresponding mel spec-
trograms needs to be refined into a phoneme-wise alignment. More precisely, this alignment
specifies the number of mel frames that are associated to each phoneme, and is henceforth de-
noted as d. To this end, we use an aligner model [10] that temporally aligns phoneme sequences
to mel spectrograms. In addition to that, we extract frame-wise prosody features. These com-
prise energy as the L2-norm of the mel spectrogram frames, pitch in Hertz, and voicing confi-
dence, which can be interpreted as saliency of the pitch estimates. Pitch and voicing confidence
are extracted using CREPE [11]. Subsequently, the alignment information in d is re-used to
summarize frame-wise prosody features to the phoneme level, yielding phoneme-wise energy
e, pitch p, and confidence c. As proposed in previous works [2, 4], we thereby discard pitch
estimates below a certain voicing confidence threshold.

2.2 Model

We use an acoustic model based on ForwardTacotron [5]. The model was extended with prosody
predictors for phoneme duration, pitch, energy, and voicing confidence, as described by Zalkow
et al. [12]. An overview of the architecture is shown in Fig. 1a. On a high level, the acoustic
model consists of an encoder part where phoneme sequences and speaker identifiers are trans-
formed into internal representations. Note that the sequence length stays the same as the number
of phonemes in the phoneme sequence throughout all layers of the encoder. It is therefore much
lower than the corresponding number of target mel spectrogram frames. The middle part serves
three purposes: First, in the “prosody provider,” a bank of prosody predictors estimates dura-
tion d̂, pitch p̂, energy ê, and voicing confidence ĉ per phoneme based on the encoder output.
Second, the internal feature representation is augmented with these estimates. Third, the so-
called “length regulator” resamples the temporal axis of the internal feature representation in a
non-equidistant fashion to the number of mel spectrogram frames using the durations from the
prosody provider. The final building block of the acoustic model is the decoder, which predicts
the mel spectrogram from the augmented internal representation.

As mentioned before, the prosody predictors are trained jointly with the encoder and de-
coder of the acoustic model. To that end, they receive the output of the encoder and learn to
predict their respective prosody values d̂, ĉ, p̂, ê by minimizing the L1-Loss to the ground-truth
features d, c, p, e. It is important to note that the same ground-truth information is also used
during training in a teacher-forcing paradigm. That means both the length regulator and the
decoder are exposed to ground-truth prosody features throughout the entire training process.
This helps to stabilize the training of the overall model since it can be expected that the prosody
predictors perform poorly early in the training process.

At inference time, one has usually no access to ground-truth prosody features and has to
rely on the prosody predictors as shown in Fig. 1e. However, for our experiments, we directly
provide specific pitch and energy features which we can deliberately manipulate as shown in
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Experiment Feature Normalization Method Augmentation Method Genders in Training Data

orig normGlob normInd concatenation addition female male

a X X X X
b X X X X
c X X X X
d X X X X
e X X X X
f X X X
g X X X

Table 1 – Overview of models with different feature normalization methods, augmentation methods,
and genders in the training data.

Fig. 1d. In our evaluation, we focus on shifting the pitch (see Sec. 2.3.2) before passing it to
the decoder. Since, in our experimental setup, we use only ground-truth pitch and energy val-
ues (both during training and inference), we remove the respective predictors from the acoustic
model, as shown in Fig. 1c. This will also influence the learning of the internal feature repre-
sentation in the encoder. Obviously, such a models is not usable for inference, but allows us to
study the encoder and decoder independently from the prosody predictors.

As a neural vocoder, we use a pre-trained StyleMelGAN [13], which is fixed throughout
all experiments of this paper. Since the voices from our training dataset were included in the
vocoder training, we can expect good synthesis quality.

2.3 Experimental Setup

2.3.1 Feature Normalization

As shown in Fig. 1a, the encoder output of the acoustic model is augmented with the output of
the prosody provider (i.e., pitch, energy, confidence, and duration information). Recall that the
prosody predictor outputs are replaced by ground-truth prosody features d, c, p, e (see Fig. 1c)
in order to realize teacher-forcing during training. In contrast, d̂ and ĉ are used instead of d
and c during inference, see Fig. 1d. Unlike for duration and confidence, we always use ground-
truth pitch and energy in the experiments of this paper, since we are interested in investigating
the effect of feature normalization with regard to these features. Normalization in our case is
realized by subtracting a mean value and dividing by a standard deviation. Since we operate
in a multi-speaker setting, we can either base these statistics on the complete dataset (yielding
global normalization) or on a per-speaker basis (yielding individual normalization). Regarding
“no normalization” with features remaining at their original values as additional option, we
have three normalization options, which are also shown in Tab. 1: no normalization (referred
to as “orig”), global normalization (referred to as “normGlob”), and individual normalization
(referred to as “normInd”).

2.3.2 Pitch Shifting

We evaluate the success of the normalization approaches described above using 20 held-out
pairs of phoneme sequences and speech recordings per speaker. To cover a pitch range which
goes beyond the pitch distribution observable in the training data, we deliberately apply pitch
shifts to the ground-truth pitch p from −1 octave to +1 octave in semitone steps. In the follow-
ing, we refer to those pitch values as “expected pitch” and denote them for brevity by p̃. Then,
we use our trained TTS system to synthesize speech with the given expected pitch. Since we
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use 25 different pitch shifts, this strategy yields 25 different synthetic speech samples per test
utterance, totaling to #speakers · #sentences · #shi f ts = 4 · 20 · 25 = 2000 audio samples per
experiment. The pitch of the synthesized speech samples is extracted using CREPE, and again
summarized to the phoneme level. We refer to this as the “actual pitch”, denoted by p̄. Ideally,
p̄ should closely follow p̃, but, in practice, there are differences, which we quantify as pitch
accuracy and discuss in Sec. 3. Obviously, this is a purely objective evaluation strategy, leaving
subjective assessment of speech naturalness for future research.

2.4 Further Experiments

To receive some insights into how the pitch is used by the acoustic model, we conduct further
experiments:

Comparison of addition and concatenation: In previous works, augmentation of the
encoder output with prosody features is often realized by adding prosody values to the encoder
output. This requires to process them by an additional layer to match the feature dimensions.
We conduct experiments with concatenated, as well as added features, as shown in Tab. 1.

Single-gender models: We evaluate the pitch accuracy for each speaker separately. To
verify our assumption that more diverse training data helps generalization, we train a model
with only female speakers and a model with only male speakers (see Tab. 1: exp. f, g) and
compare them to a model trained with all four speakers.

Arbitrary scaling of pitch: We investigate the principal influence of the range of values
covered by the pitch features, regardless of plausible normalization. To this end, we arbitrarily
upscale pitch features (when normalized, as in Tab. 1: exp. b, c) or arbitrarily downscale pitch
features (when unnormalized, as in Tab. 1: exp. a).

3 Results

3.1 Evaluation of General Accuracy

We evaluate the experiments shown in Tab. 1, including the methods explained above for
prosody feature normalization, the methods for augmenting the encoder output, and the dif-
ferent training sets. These setups are compared with regards to their ability to retain the ex-
pected pitch values in the synthesized audio samples. Therefore, we condition the models with
the expected pitch p̃ and derive the actual pitch p̄ as described in Sec. 2.3.2. To measure the
distance between p̃ and p̄, we compute the pitch accuracy as mean squared difference in semi-
tones. The results are shown in Tab. 2. Experiments a–c entail the different normalization
methods, indicating that the usage of unnormalized (“orig”) prosody features yields the lowest
error and per-speaker normalized (“normInd”) prosody features yield the highest error in an
otherwise fixed setup. The low accuracy associated with the per-speaker normalization can be
expected, since in this scenario, the features convey less information about the absolute pitch
to the decoder. With regards to the method for augmenting the encoder output with the values
from the prosody provider, experiments d and e in Tab. 1 show that augmentation by addi-
tion leads to higher errors than augmentation by concatenation when tested in a setting without
normalization (“orig”). When considering global normalization “normGlob,” augmentation by
addition leads to similar (slightly lower) errors compared to augmentation by concatenation. In
experiments f and g, we train models on the data of only female (experiment f) or only male
speakers (experiment g). Apart from the training data, the setup is similar to experiment a. For
all speakers, the accuracy of the single-gender models is inferior to the accuracy of the model
trained with the complete dataset, indicating that a more diverse training dataset is beneficial
for the pitch accuracy. Furthermore, we modify experiments a and b by arbitrary downscaling
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Experiment female 1 female 2 male 1 male 2 Average

a (orig, concat) 5.04 (±2.04) 4.74 (±1.94) 8.22 (±2.57) 7.60 (±2.47) 6.40
b (normGlob, concat) 9.73 (±2.70) 10.15 (±2.62) 8.65 (±2.61) 8.18 (±2.54) 9.18
c (normInd, concat) 13.31 (±3.16) 14.25 (±3.16) 9.72 (±2.79) 12.77 (±3.21) 12.51
d (orig, add) 15.91 (±2.93) 15.77 (±2.83) 10.80(±2.65) 15.31 (±3.27) 14.45
e (normGlob, add) 4.30 (±1.92) 4.68 (±1.95) 8.17 (±2.57) 6.88 (±2.37) 6.01
f (orig, concat, only Female) 9.70 (±2.75) 9.17 (±2.63) 9.44
g (orig, concat, only Male) 10.30 (±2.89) 13.68 (±3.27) 11.99
a with arbitrary downscaling 11.47 (±2.99) 11.98 (±2.86) 8.09 (±2.51) 8.66 (±2.60) 10.05
b with arbitrary upscaling 3.26 (±1.65) 3.44 (±1.67) 9.44 (±2.80) 9.06 (±2.72) 6.30

Table 2 – Results of the experiments which were described in Tab. 1. The results are given as mean
squared error and standard deviation of the distance between expeced pitch p̃ and actual pitch p̄ in
semitones. For details of the experiments using arbitrarily downscaled/upscaled pitch features, see
Sec. 2.4.

and upscaling of the prosody features, respectively, as described in Sec. 2.4. The downscaling
operation leads to a lower accuracy compared to the original experiment a, while the upscaling
operation improves the accuracy compared to the original experiment b. Therefore, it can be
assumed that features in a higher value range are beneficial for the accuracy.

Figure 2 – Comparison of expected pitch p̃ and actual pitch p̄ for (a) a model with unnormalized (“orig”)
pitch features (corresponding to experiment a in Tab. 1), (b) a model with globally normalized (“norm-
Glob”) pitch features (corresponding to experiment b in Tab. 1) and (c) two models with unnormalized
(“orig”) features which are trained on only female or only male speakers respectively (corresponding to
experiments f and g in Tab. 1). The pitch is given in semitones with a base frequency of 10 Hz. Ideally,
p̃ is similar to p̄ (as indicated by the orange diagonal lines). The figure depicts the distributions of p̃ and
p̄, estimated using a kernel density estimate.
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3.2 Evaluation of Accuracy Depending on Pitch Range

We intend to gain more insights into the relationship between the expected pitch features p̃ (i.e.,
features which are passed to the model) and the actual pitch values p̄ (i.e., pitch features de-
rived from the synthesized audio samples). To this end, we select four experiments from Tab. 1
for further investigation: Experiment a, which uses unnormalized (“orig”) prosody features and
corresponds to a high pitch accuracy as shown in Tab. 2, experiment b, which relies on globally
normalized (“normGlob”) features, experiment f, which reduces the training dataset to only fe-
male speakers, and experiment g with a training dataset including only male speakers. For these
experiments, we plot the distribution of (p̃, p̄)-pairs as kernel density estimate plots in Fig. 2.
Optimally, the expected and actual pitch should be equal, resulting in a diagonal line. In all
experiments we considered, a high density of points around the diagonal line can be observed
for mid-range pitches (i.e., close to the average pitch of the speakers). This indicates that the
expected and actual pitch values are similar in this range, and therefore, the controllability of
pitch works well. Comparing the distribution of pitch values of the experiments with unnormal-
ized “orig” features (Fig. 2a) and globally normalized “normGlob” features (Fig. 2b), it can be
seen that the latter exhibits inferior accuracies for low frequencies in female voices, explaining
the high error for female voices in Tab. 2 (experiment b). The model trained only on data from
female speakers (experiment f, see Fig. 2c left) is not able to reconstruct low frequencies accu-
rately. Similarly, the model trained only on data from male speakers (experiment g, see Fig. 2c
right) has problems with high frequencies. In summary, the plots in Fig. 2 confirm the result
from Tab. 2, indicating that models with unnormalized (“orig”) pitch features and a diverse
training dataset achieve comparably high pitch accuracies for a large range of pitch values.

4 Conclusions

We trained acoustic models with the capability to control the prosody explicitly and examined
the effects of feature normalization on the pitch ranges in the synthesized speech. In contrast
to the common assumption of previous works, our results clearly show that the original feature
range yields the lowest error when using concatenation. Furthermore, we can confirm that the
pitch shifting capabilities per speaker benefit from the presence of other speakers with diverse
pitch ranges in the training data.
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