
A COMPARISON OF MODULE SELECTION STRATEGIES FOR MODULAR

DIALOG SYSTEMS

Philine Görzig1, Jan Nehring2, Stefan Hillmann1, Sebastian Möller1,2

1 Technische Universität Berlin, 2DFKI Berlin

p.goerzig@tu-berlin.de

1 Introduction

Dialog systems (DS), also known as conversational agents or chatbots, have become increas-

ingly popular in recent years. However, the creation and scaling of these systems can be a

challenge. Each system must be tailored to a specific use case, and adding new functionality in-

creases complexity. Additionally, transferring a system to a new use case or combining multiple

systems into one can be difficult. One approach to this problem is to divide the dialog systems

up into sub-systems or to use already completed dialog systems as part of a larger system. Each

sub-system becomes a module of an expandable Modular Dialog System (MDS) [1]. In an

MDS, a module selector (MS) chooses the appropriate module to respond to a user’s input. The

approach allows for scalability across multiple domains and topics without requiring repeated

manual work. An MDS presents its own set of challenges, such as ensuring all components

work well together and managing the additional error introduced by the MS.

2 Related Work

In MDS, the users are unaware that they are talking to multiple dialog systems [2] unless they

are purposefully made aware of this fact [3]. The MS chooses which module should respond

to a received message. MS is a classification problem that is typically solved by sending the

utterance to each module and picking the module that returns the highest confidence value. One

proposed theoretical setup for such an MDS is the bot-orchestrator [4] for combining domain

expert bots.

Nehring and Ahmed [1] compare normalization methods on the confidence values of the

modules and their effect on the performance of MDSs with varying numbers and sizes of mod-

ules. The results show that the performance decreases with an increasing number of modules

and that the normalization methods show a slight performance improvement with balanced

modules. All but one even decrease the performance with imbalanced modules as opposed to

using no normalization.

Other MDSs such as CLARA [3] and AIDA [5] also have a central unit that selects the ap-

propriate module, with decision-making processes that vary depending on the system. CLARA

combines four modules, and if the confidence of one module does not pass a threshold, the

utterance is passed on to the next. AIDA has six modules, and the MS chooses a module based

on many factors, including user utterance, states of the modules, interaction history, task hier-

archy, and user profile. COBOTS [6] is another MDS with domain expert modules for eleven

domains. A machine learning model is trained for each separate domain, and the modules are

then picked based on their domain prediction score. IBM Watson is used to decide whether a

domain module or a backup information retrieval system should respond.

40



3 Setup

In this paper, multiple scenarios are set up and compared to each other based on how they per-

form. Each scenario uses a different combination of features and classification models. The

various features are extracted from the module response and the user utterance. These module

classifiers range in complexity from simple normalization methods to fully connected, mul-

tilayer, feedforward networks (MLP) and text-classification models such as BERT [7]. The

scenarios are evaluated on the HWU64 dataset [8]. The three modules integrated into the MDS

use Rasa NLU [9], Google Dialogflow [10], and IBM Watson Assistant [11]. The performance

of the MS is measured with the f1-score of the module classification. Additionally, the perfor-

mance of the complete MDS is measured through the f1-score of the intent classification. The

performance is compared to the intent classification performance of dialog systems that are not

modular (singular-DS). We use a framework from Nehring and Ahmed [1], which creates an

MDS by randomly distributing the intents of a dataset onto the modules.

3.1 Features

The confidences seem like the obvious choice for MS since each dialog system returns a confi-

dence to show how sure it is that it classified the intent correctly. However, the confidence does

not show how sure the dialog system is that the intent belongs to it. Dialog systems are usually

not built to work in a modular setting and are not built to work in combination with one another.

They are built with the expectation that they are each trained on the full scope of intents they

are used with.

We explore four different MS inputs: One is the module’s confidence for the most likely

intent (max). The second uses the confidence and the knowledge of which intent was detected

(intent). This is done by creating a vector with the same length as the number of unique intents

in the module’s training data. The third focuses on the entities, creating a vector that contains

the entity confidence values for each detected entity (entity). A combination of all three (all)

contains everything that can be extracted from the module responses. The last explored input is

the user utterance.

3.2 Models

The MLP model has two linear layers with 1024 neural units each. Each linear layer is con-

cluded with a rectified linear unit (ReLU) activation function and a batch normalization layer

(BatchNorm). The model is then concluded with a dropout layer (dropout probability of 0.1), a

final linear layer that maps the data to the output dimension (equal to the number of modules),

and lastly, a log softmax activation function (see Fig. 1a). The input size varies depending on the

feature representation used. During training, the model is optimized with the Adam optimizer

using the negative log-likelihood loss (NLLoss). The learning rate and batch size were chosen

through a hyperparameter grid search. The combinations of both hyperparameters depend on

the specific combination of features and models in each scenario. While a learning rate of 2e-5

performed best in all scenarios, the batch sizes vary depending on the scenario.

In addition to the information the MS can extract from the module responses, the MS also

holds the utterance that is passed on to the modules as an additional feature for the MS. Natural

language classifiers are very powerful. Especially the BERT model works well on classification

problems. The utterance is processed by the NLU model BERT. The string is first tokenized with

the BERT tokenizer that has truncation, and padding strategies on. The token representation of

the utterance is then run through a BERT model to turn it into features the MLP can use for

41



(a) MLP (b) BERT (c) Full Model

Figure 1 – The separate architectures of the MLP and BERT models used. a) The architecture of

the MLP. The MLP has two hidden layers consisting of 1024 units. Each hidden layer has a ReLu

activation function and a BatchNorm layer. The output is normalized with a LogSoftmax function.

b) The architecture of the BERT model. The user utterance is tokenized and run through 12 hidden

encoder layers and a pooler layer. The output has 768 units. c) The combined model consists of the

MLP and the BERT model. The input into the MLP is a feature representation that is either the module

response or the user utterance feature representation. When both feature representations are used, they

are concatenated.

classification. The BERT model consists of twelve hidden encoder layers and a pooler layer.

All these layers have a dimensionality of 768. The pooler layer consists of a linear layer and

a tanh activation function (see Fig. 1b). The BERT model is built into the classification model

and learns with backpropagation. Only the tokenization of the BERT model is static. The BERT

and the MLP model are combined by concatenating the pooler output of the BERT model with

a vector that holds all additional features before passing this new feature vector to the MLP (see

Fig. 1c).

3.3 Dataset

We use a large, noise-included benchmark dataset for textual data, the HWU64 dataset [8].

It is a benchmark dataset for task-oriented dialog systems, containing 25,716 annotated user

utterances in English. Each utterance is assigned to one of 68 intents, belonging to one of

18 domains from the topic of home automation. The dataset contains no out-of-scope data, but

since the data is divided among the modules, each module will see data outside of its scope. The

dataset was generated through crowd-sourcing and is considered a more difficult NLU dataset

[12]. The distribution of the intents and domains is uneven, with some intents having as few as

412 utterances and others having as many as 6102.

For our experiment, we produce module datasets of varying sizes by randomly distributing

the 18 domains onto three modules, meaning 6 of the 18 domains are assigned to each module.

42



Figure 2 – The setup of the MDS framework. 1. The modules are trained. The dataset is split into three,

and each module receives its dataset to train on. 2. The modules process the training data for the MS.

Each module receives the complete MS training set and returns its responses to each utterance to the

Broker. 3. The MS is trained. The Broker passes the responses of the modules to the MS, including the

user utterance and the correct target module. 4. The MDS is in operation. The user sends an utterance to

the MS. The utterance is passed through the Broker to each module. The module responses are translated

and combined into a feature representation. The MS uses the feature representation and/or the utterance

itself to pick one module to respond to the user.

Module datasets of varying sizes are purposefully not prevented since it often occurs to have

modules that vary in importance, size, and versatility. The domain separation between the

modules is maintained to create a realistic module split where each module has different use

cases. The dataset is also randomly split into a test dataset, a validation dataset, and a training

dataset, with 15% of the data going to the test and validation datasets and the remaining 70%

to the training dataset. To avoid overfitting, the training dataset is further divided into two sets:

one for training the modules and one for training the MS. Specifically, 75% of the training data

is used to train the modules, and another 75% is used to train the MS, resulting in 50% of the

training dataset being shared between the two sets.

3.4 Runs

The evaluation is done on five separate runs with different data splits to rule out any depen-

dence on the split and to ensure an equal distribution of data between the modules. The final

performance scores are the average of the five runs. The main scenario is evaluated with three

modules, each using a different NLU framework. Additional scenarios are used for comparison

as a secondary experiment and are evaluated on only one run.

3.5 Framework

Our MDS is built with a framework for MDS [1]. The framework constructs an MDS by com-

bining two or more fully functioning dialog systems as modules. The complete MDS consists

of the MS, the Broker, and the fully trained modules. When the user sends an utterance to the

MDS, the utterance gets sent to the MS. The MS passes the utterance to the Broker. The Broker

sends the utterance to every module and turns the module responses into the feature representa-

tion the MS requires. The MS then receives the feature vector that represents the responses and

uses them to determine which of the modules should answer (see Fig. 2).

43



all targets

min max avg std (of avg) min max avg std (of avg)

Rasa 0.2 1 0.88 0.03 0.28 1 0.99 0.002

Dialogflow 0 1 0.56 0.14 0 1 0.95 0.010

Watson 0 1 0.55 0.06 0 1 0.96 0.007

Table 1 – Average, minimum, maximum, and standard deviation of confidence scores using Rasa, Di-

alogflow, or Watson. Dialogflow and Watson show very similar behavior. The table is split between the

statistics for all confidence values and statistics for confidence values of the data points assigned to the

module (targets).

4 Experiment

The following scenarios are first evaluated in terms of MS and compared to an MS baseline. The

intent classifications of the MDSs with the best-performing MS methods are then compared to

intent classification baselines and run with varying module setups.

4.1 Baselines

The baseline for MS is the commonly used method of choosing the module with the highest

confidence value (max). Additional intent classification baselines are set to compare the per-

formance of the MDS with traditional, non-modular DSs (singular-DS) using the same data.

These baselines are the intent classification performances of singular-DSs trained on all do-

mains and intents instead of splitting the domains onto modules. Each singular-DS uses either

Rasa, Dialogflow, or Watson.

4.2 Normalization

The evaluated normalization methods for the confidence scores are simple min-max normal-

ization, average normalization, and a combination of both. Tab. 1 shows the average, mini-

mum, maximum, and standard deviation of the confidences for each NLU framework (Rasa,

Dialogflow, and Watson). The Dialogflow and Watson confidences always range from 0 to 1,

while the Rasa modules have a minimum confidence of around 0.2. The average confidences

also show that the Rasa modules generally return higher confidence than Dialogflow and Wat-

son modules. This means that min-max normalization methods would not affect Dialogflow

and Watson scores as they already range from 0 to 1, but they could adapt Rasa scores to those

of the other NLU frameworks. The statistics also show that the average confidences are much

higher for all frameworks when looking at the target confidence scores only.

4.3 Scenarios

In addition to normalization, the MLP models, with and without BERT, are combined with

the introduced features, resulting in six further scenarios for MS: MLP+conf, MLP+intent,

MLP+entity, MLP+all, BERT+intent, and BERT+all.

5 Results

5.1 Module Selection

The performance of different normalization methods, MLP models without BERT, and MLP

models with BERT integrated are compared to the baseline by using the f1-score. The baseline

44



f1 recall precision

Rasa 0.65 0.96 0.50

Dialogflow 0.64 0.50 0.91

Watson 0.65 0.54 0.92

Table 2 – The recall and precision scores of the MS-baseline over each NLU framework.

- confidence intent entity all

random, baseline 0.33 0.66 - - -

norm - 0.74 - - -

MLP - 0.82 0.87 0.74 0.88

text-classification 0.94 - 0.94 - 0.95

Table 3 – Overview of MS F1-scores, the MS methods, and the features used. All evaluated MDSs have

three modules. The MS baseline is picking the maximum confidence. The method text-classification

uses the user utterance as a feature. When no additional features are used, the MS is done without first

communicating with the modules. Combinations without a score have not been evaluated.

always selects the module with the highest confidence score. Tab. 1 shows that Rasa modules

have a much higher average confidence score. Consequently, max tends to select the Rasa

module over the Dialogflow and Watson modules. Rasa’s high recall and low precision scores

confirm this behavior and can be found in Tab. 2.

The effectiveness of normalization depends on the behavior of the confidence scores as

well. Normalization is mostly useful when the confidences of the modules show varying behav-

ior, which is the case when combining different NLU frameworks in one system. All normal-

ization methods improve the baseline, but the best results occurred when normalizing with the

min, max, and average target confidences instead of the respective overall confidences.

Tab. 3 gives an overview of each module selection strategy and its performance. Every pro-

posed MS method is an improvement from the baseline MS. The text-classification MS method

(BERT) outperforms every other scenario. After text-classification, the MLP showed the best

results. The table depicts the results of the best-performing normalization method, which is a

combination of the min-max and average normalization methods on the target confidences.

5.2 Intent Classification

The intent classification performance is dependent on MS and the performance of each module’s

NLU. We compare the scores of the MDS scenarios to the singular-DS baselines. All results

are found in Tab. 4. The MDS scenarios have a higher score than the singular-DS, indicating

that the MDS improves the singular-DS scenario. Since MS is an additional source of error,

we did not expect to exceed the singular-DS baseline. Further, the performance of MDSs using

multiple different NLU frameworks (combined MDS) is compared to systems using the same

framework for all modules.

6 Discussion

All evaluated features hold enough information to build a good enough classifier to distinguish

the three modules. However, some setups work better than others. The text classification MS

performs very well on the module classification task, and it is suggested that a text classification

model is considered for the MS.

The performance of the proposed MS methods varies for each NLU framework. Normal-

45



sg.-DS max norm MLP BERT

+conf +all +intent +all

R+D+W - .6151 .6877 .7649 .8162 .8561 .8558 .8573

Rasa .8336 .7306 .7298 .6449 .7803 .8537 .8609 .8560

Watson .8038 .7371 .7371 .7435 .7808 .8130 .8172 .8154

Dialogflow .7450 .7960 .7960 .7917 .8123 0.8427 .8393 .8403

Table 4 – Averaged micro f1-scores over the five runs of intent classification where all setups learned

the same intents. The setups include the singular-DSs (sg.-DS) and the MDSs with three modules using

only Rasa, Dialogflow, and Watson, as well as one using one of each (R+D+W). The best score of each

combination is highlighted in bold. The best score overall is underlined. We compare the performance

of normalization (norm), MLP models without Bert (MLP), and MLP models with BERT (BERT) to the

max-baseline (max).

ization improves the performance of combined MDSs. However, when all modules use the

same framework, the normalization methods cannot beat the baseline. This indicates that the

NLU frameworks already produce fairly comparable scores across independent modules. The

overall performance of the combined MDS is strong and can compete with MDS that use just

one framework. The Rasa MDS has the best performance overall.

Using MDS has its trade-offs, as it adds the MS, another decision component, to the DS.

The success of an MDS is dependent on the efficiency of the selection methods of the MS

component. However, even if the performance of the MDS is not better than the performance

of a singular-DS, it makes it possible to combine completed dialog systems, which requires

less effort than building a singular-DS with combined capabilities. Additionally, the modu-

lar approach also allows the incorporation of completed dialog systems that can no longer be

changed. Furthermore, modular systems have other advantages, such as being more scalable,

expandable, and combinable. It is also worth noting that the number of integrated modules and

the use of a good MS are crucial in maintaining high classification scores. In our evaluated

scenarios, the performance of MDS is shown to beat the performance of singular-DS, despite

the added source of error through the module selection.

7 Conclusion and Future Work

Extracting more information from the module responses changes the performance of MS. Even

the entities provide enough information to build a classifier that beats the baseline. Combining

all this information for MS works best. The full module response contains detailed information

about the recognized intent and the intent confidence, as well as the entities and the entity

confidences. Further, MS using features extracted from the user message performed even better

than only using the module response. Using the BERT model and no additional features from

the module response is doing well enough to consider dropping the integration of the module

responses into MS. Since it is both costly and time-consuming to train a BERT model and to

obtain the training data for the MS from the modules beforehand, the results indicate that doing

both does not improve the result enough to make the costs worthwhile. Although the much

simpler normalization methods also exceed the baseline, they are significantly worse than the

MLP scenarios. Further, the normalization methods still require a certain amount of pre-training

to calculate the minimum, maximum, and average of target values.

In addition, the performance of the MDS with BERT exceeds the performance of the

singular-DSs. This result can be observed with each NLU framework. After comparing mul-

tiple DSs trained on the same data and using varying NLU frameworks, we found that the

best-performing system is an MDS composed of three Rasa NLU modules. It also works well

46



to combine modules that use several different NLU platforms.

Possible future work is testing a varying amount of modules, testing other datasets, exper-

imenting with different dataset splits, and exploring the use of other NLU models that may be

faster or more efficient. Other dataset splits should also be evaluated to find the right balance of

overlap between the MS and module training sets.

References

[1] NEHRING, J. and A. AHMED: Normalisierungsmethoden für intent erkennung modularer

dialogsysteme. In Proc. ESSV 2021, pp. 264–271. TUDpress, 2021.

[2] PLANELLS, J., L. HURTADO OLIVER, E. SEGARRA, and E. SANCHIS: A multi-domain

dialog system to integrate heterogeneous spoken dialog systems. In Proc. Interspeech

2013, pp. 1891–1895. 2013. doi:10.21437/Interspeech.2013-459.

[3] D’HARO, L. F., S. KIM, K. H. YEO, R. JIANG, A. I. NICULESCU, R. E. BANCHS,

and H. LI: Clara: a multifunctional virtual agent for conference support and touristic

information. In Natural language dialog systems and intelligent assistants, pp. 233–239.

Springer, 2015.

[4] STUCKI, T. and S. D’ONOFRIO: Architekturmuster für Multi-Chatbot-Landschaften:

Bot-Orchestrator und Alternativen. HMD Praxis der Wirtschaftsinformatik, 57(6), pp.

1187–1205, 2020.

[5] BANCHS, R. E., R. JIANG, S. KIM, A. NISWAR, and K. H. YEO: AIDA: Artificial

intelligent dialogue agent. In Proc. SIGDIAL 2013, pp. 145–147. ACL, Metz, France,

2013.

[6] SUBRAMANIAM, S., P. AGGARWAL, G. B. DASGUPTA, and A. PARADKAR: Cobots - A

cognitive multi-bot conversational framework for technical support. In Proc. Int. Conf. on

Autonomous Agents and MultiAgent Systems 2018, pp. 597–604. 2018.

[7] DEVLIN, J., M.-W. CHANG, K. LEE, and K. TOUTANOVA: BERT: Pre-training of deep

bidirectional transformers for language understanding. In Proc. NAACL 2019, pp. 4171–

4186. ACL, 2019. doi:10.18653/v1/N19-1423.

[8] LIU, X., A. ESHGHI, P. SWIETOJANSKI, and V. RIESER: Benchmarking natural lan-

guage understanding services for building conversational agents. In Proc. IWSDS 2019,

pp. 165–183. Springer, 2021. doi:10.1007/978-981-15-9323-9_15.

[9] Rasa open source version: 3.x docs. https://rasa.com/docs/rasa/, Accessed: 2021-

11-28.

[10] Google dialogflow documentation. https://cloud.google.com/dialogflow/docs/,

Accessed: 2021-11-28.

[11] Ibm cloud api docs / watson assistant v1. https://cloud.ibm.com/apidocs/

assistant-v1?code=python, Accessed: 2021-11-28.

[12] BUNK, T., D. VARSHNEYA, V. VLASOV, and A. NICHOL: DIET: Lightweight Language

Understanding for Dialogue Systems. 2020. doi:10.48550/arXiv.2004.09936.

47


	Philine Görzig, Jan Nehring, Stefan Hillmann, Sebastian Möller A Comparison of Module Selection Strategies for Modular Dialog Systems 

