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Abstract: Classical algorithms for Speech Enhancement (SE) often show unsat-
isfactory results in loud or exquisite noise scenarios which can be stationary or
transient. Data-driven estimation techniques can outperform classical algorithms
by means of machine learning. In this work machine learning and the classical
approach are brought together in a Speech Enhancement System (SE-System). Fur-
thermore, the source-filter model of speech production is used in such a way, that
spectral speech features, namely excitation and envelope, can be estimated sepa-
rately and subsequently combined. The estimation of the envelope was done by
a Deep Recurrent Neural Network (Deep-RNN) as regressive model. The spec-
tral envelope is extracted by an Infinite Impulse Response-Filter (IIR-Filter). The
Deep-RNN is trained with many speakers and tested with several unseen speakers,
to approach speaker generalization. Finally, the estimations as well as the poten-
tial of signal improvements, by applying the ideal excitation by the SE-System, are
measured and discussed.

1 Introduction

The utilization of single-channel speech enhancement, which uses the divide-and-conquer prin-
cipal to solve the challenging task of SE in two stages is considered in this work. This approach
uses source-filter model to split the task into two sub-problems. This sub-problems are then
solved by separately improving the source (the excitation signal) and the filter model (the spec-
tral envelope) used for speech reconstruction [1].
Studies on the spectral envelope estimation with repetitive Long Short-Term Memory (LSTM)
for single speaker and stationary car noise scenarios have been done before [2]. In order to
measure the improvement of spectral envelope quality Log Spectral Distance (LSD) [3] is used.
The improvement of the spectral envelope during speech was 6.42 dB at a Signal to Noise Ratio

(SNR) of 0 dB. Estimations of cepstral envelope representation showed less improvement com-
pared to the spectral envelope approach. However, this work focuses on the more promising
spectral envelope estimation with the further goal of a speaker generalization in a SE-System.
To determine the improvement potential of the reconstruction in a SE-System, the clean excita-
tion is utilized, making the reconstruction ideal concerning the excitation part. The Short-Time

Objective Intelligibility (STOI), which is highly correlated to envelope quality, is used to mea-
sure the improvement of intelligibility [4]. The Perceptual Objective Listening Quality Analysis

(POLQA) [5] algorithm is used to measure the improvement in listening quality.

2 State of the Art

The utilization of the source-filter model is one of many ways to enhance speech. The envelope
and excitation make up the main share of improvement potential since they map a magnitude

202



spectrum in two feature-domains [6]. But also the noisy phase can be improved. According to
[7], a phase enhancement achieves a better result by about ∆MOS-LQO =+0.2 (Mean Opinion

Score, Listening Quality Objective due to PESQ [8]) in noise scenarios with SNRs below 5 dB.
In [9] a potential improvement of ∆MOS-LQO =+0.1 is assumed. However this work focuses
on the envelope estimation which means no phase enhancement was done and obviously no
approach for the excitation estimation, yet.

3 Signal Model

A time discrete microphone signal yn can be described as addition of the desired speech signal
sn and noise dn:

yn = sn +dn. (1)

3.1 Source-Filter Model

The source-filter model of speech production decomposes a speech signal into a filter and source
component [10] wherein:

a) The vocal tract shapes the envelope, which is modeled as filter.
b) The human glottis generates the excitation signal, which is therefore called the source.

Speech production sn is modeled as convolution of the envelope an with the excitation bn:

sn = an ∗bn. (2)

3.2 Analysis Filterbank

A Short-Time Fourier Transformation (STFT) with analysis window hana,k (Slepian-type) is
applied to overlapped input segments according to:

Y µ,η =
NDFT−1

∑
k=0

yηr−khana,ke− jΩµ k , (3)

with k = 0,1, ...,NDFT −1, NDFT = 512, frame shift r = 128, and Ωµ = 2π
NDFT

µ [11]. Moreover,
µ = 0,1, ...,NDFT −1 represents the subband indices and the frame index is denoted by η . The
signals have a sampling frequency of fs = 16 kHz. The short-term spectrum can be represented
by Y µ,η = Yµ,η · e jϕµ,η , wherein Yµ,η is the magnitude spectrum and ϕµ,η is the phase. Due to

the symmetry of the short-term spectrum in Eq. 3 only the first M = NDFT
2 +1 subbands are used

for feature extraction.

3.3 Spectral Feature Extraction

The envelope Aµ,η in spectral domain is extracted by means of a first order IIR-Filter applied
on the magnitude spectrum Yµ,η . The implementation consists of a forward (recursively) and
backward smoothing with a smoothing constant λ = 0.8:

Y ′

µ,η =

{

Yµ,η , if µ = 0,

λY ′

µ−1,η +(1−λ )Yµ,η , else.
(4)
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The backward smoothing is done analogues, yielding the spectral envelope:

A
y
µ,η = Y ′′

µ,η . (5)

In addition, the excitation is extracted by element-wise division according to:

B
y
µ,η =

Yµ,η

A
y
µ,η

. (6)

3.4 Feature Normalization

The logarithmized spectral envelope feature is αµ,η = 20log10(A
y
µ,η). The Eq. 7 shows how

the normalization is applied [12]. It is done by mean subtraction followed by division of the
standard deviation over each µ feature-bin, along every η = 0, ...,N −1 time-frame of a whole
data set:

α̃µ,η =
αµ,η − ᾱµ

σαµ

. (7)

The normalization paradigm by choice is to normalize clean envelopes first and applying the
obtained parameters on the noisy envelopes.

3.5 Reconstruction and Synthesis Filterbank

As a first step for the reconstruction of the enhanced signal the estimated spectral envelopes
should be denormalized before multiplying it with the excitation. The normalization shown in
section 3.4 is therefore done vice versa by multiplication of σαµ and adding ᾱµ .

The denormalized and delogarithmized estimated envelopes are Ăµ,η = 10
ᾰµ,η

20 . The recon-
struction takes place by combining the excitation of the clean signal (Bs

µ,η ) and the estimated
envelope again by element-wise multiplication over every subband for each frame:

Ŷµ,η = Bs
µ,η Ă

y
µ,η , (8)

Signal synthesis is realized in a straightforward manner by first computing the inverse DFT
of the reconstructed spectrum:

ŷκ ,η =
1

NDFT

NDFT−1

∑
µ=0

Ŷ µ,η e jΩµ κ , (9)

and overlapping the time-domain signals ŷκ ,η after weighting with a synthesis-window (Slepian-
type), wherein κ = 0,1,2, ...,NDFT−1.

4 Deep-RNN

4.1 Architecture

Figure 1 shows the structure of the LSTM-based Deep-RNN architecture. The input of the
Deep-RNN has a dimension of four spectral envelope frames with 257 features each. That
means that four frames at a time get processed due to get one enhanced feature frame on the
output, which is done by using a dense layer.
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Figure 1 – Structure of the LSTM-based Deep-RNN architecture.

4.2 Data set

Noisy speech data for training and testing purposes is produced based on the 56 clean speakers
of Edinburgh Corpus [13] by adding stationary car interior noise for several Signal-to-Noise

Ratios (from −5 dB to 15 dB in 5 dB steps). In the same manner a 13 speaker test data set,
with ≈ 0.5 h audio material was generated. It is detached from the training and validation sets,
because there are no speakers of the training or validation sets included.

4.3 Training

The proposed Deep-RNN network is trained with the standard back-propagation [14], which
applies the Mini-Batch Gradient Descent on a number of feature-frames Nmb. The Mean

Squared Error Loss (MSE) serves as the objective function. The optimizer used is Adam with
the learning rate 0.0002. The MSE is computed for log-normalized clean envelopes α̃s

µ,η and
log-normalized estimated envelopes ᾰ

y
µ,η , as follows:

LMSE =
1

Nmb M

Nmb−1

∑
η=0

M−1

∑
µ=0

(

α̃s
µ,η − ᾰ

y
µ,η

)2
. (10)

During training the loss gets double checked by validation. The model parameters get saved, if
training and validation loss decreased, otherwise the learning rate rlearn is lowered by 0.6, which
is called Performance Scheduling. If validation differs significantly to training loss, the training
runs into over- or underfitting. Training stops at this point to save computation time (Early

Stopping). The ℓ2-Regularization and Dropout were employed in order to reduce overfitting
[12, 15]. Moreover a randomized audio-file order for each epoch was applied.

5 Speech Enhancement System

Figure 2 shows the concept of the idealized speech enhancement system. A noisy time signal
yn is transformed to spectral domain by Analysis Filterbank from section 3.2. The noisy phase
is saved and used later in the back-transformation. The short-time spectrum Yµ,η is smoothed
by a IIR-Filter from section 3.3 to separate the envelope from excitation. Normalization is done
by Eq. 7 on the logarithmized envelopes. The trained Deep-RNN provides the enhanced log-
normalized envelopes ᾰ

y
µ,η . Since in this study the objective is to determine the potential of the

SE-System, there is no method used for excitation estimation. Instead the clean excitation Bs
µ,η

and denormalized enhanced envelope Ă
y
µ,η is used for reconstruction from section 3.5 to get

an enhanced spectrum Ŷµ,η . After back-transformation from section 3.5, the post-filter (Wiener
Filter) is applied to deliver the further enhanced speech signal ŝn.
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Figure 2 – Concept of the SE-System with idealized reconstruction.

6 Evaluation Methods

To evaluate and compare the performance of the SE-System in terms of speech quality and in-
telligibility, STOI and POLQA are utilized. STOI has a range between 0...100%. POLQA has a
range between 0...4.75 (super-wideband 50-14000 Hz). Due to constraints of POLQA regarding
file duration, only the valid share of the test data can be used. POLQA allows measurements
with very high background noise and is therefore preferred over PESQ. To evaluate the quality
on estimated feature level, the Log Spectral Distance combined with a Speech Activity Detection

is used.

Speech Activity Detection: In order to apply measures separately, a Speech Activity Detection

for binary frame masking is realized to distinguish speech-frames and noise-frames by SNRη

of the current frame:

bη =

{

1 for SNRη > ϑ ,

0 else,
(11)

whereas for the noise power estimation the Improved Minima Controlled Recursive Averaging

Algorithm (IMCRA) is used [16]. ϑ is set to 0.4. Speech-frames are selected by β
c=speech
η = bη

and noise-frames are selected by β c=noise
η = 1−bη . Nf is the number of all time-frames of same

SNR, separated for each case c by Nc
f = ∑

Nf−1
η=0 β c

η .

Log Spectral Distance (LSD): The LSD [3] between a set of clean and estimated envelopes
As

µ,η and Â
y
µ,η in spectral domain are calculated for the cases c over Nf as follows:

LSDc =
1

Nc
f

Nf−1

∑
η=0

β c
η

√

√

√

√

1
M

M−1

∑
µ=0

[

10 log10

(

As
µ,η

Â
y
µ,η

)]2

. (12)

7 Results and Discussion

Architectural parameter adjustment and training parameter tuning were done for the used data
set. Best found parameters for the architecture and training are in Table 1. The concatenation
of eight LSTM-layers showed peak performance. The envelope estimation by the Deep-RNN
shows high improvements at feature-level during speech with low SNRs as shown in Table 2.
The STOI and MOS-LQ due to POLQA are in Table 3.

Behavior of the SE-System on different speakers: The Deep-RNN reacts differently to differ-
ent speakers, which could yield the system suspicious being biased. This assumption is made
by the experience by successive increasing the number of speakers during test and training:
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Table 1 – Best found parameters for the used
data set.

Parameter Value

nLayer 8
nneurons 449
Nmb 512
ℓ2 0.002
dropout 0.6
rlearn 2e−4

Optimizer Adam
Loss MSE

Table 2 – Average improvements by the Deep-
RNN on the envelope feature by SNR.

∆LSDc [dB] SNR [dB]
speech +6.01 0
noise +17.50
speech +8.50 -5
noise +20.00

Table 3 – Average measures.

Scheme STOI MOS−LQ

1) Noisy data 0.747 2.04
2) Wiener Filter 0.747 2.02
3) Reconstruction 0.870 2.88
4) SE-System 0.862 2.85

the results tendency to get better or worse fluctuated. However, the cause could be due to the
speaker themself. On that account a file-randomization was used, which showed a slight over-
all improvement, but wasn’t separately examined on the bias hypothesis. In general, a test for
diversity should be derived in the future, which may require the use of international speech data
base including pitch sensitive tonal languages for a true speaker generalization, similar to [17].

8 Conclusion

The training was improved by file-randomization on a batch, every epoch. Also the frameworks
for data generation, training and evaluation were improved to handle the amount of data. The
architecture was successfully tuned to fit the requirements for a more intrusive training and
testing scenario to approach the speaker generalization. The quality at feature level shows
nearly as good results as in the single speaker scenario before. Moreover, the full SE-System
with post-filter was tested in an idealized approach which assume the excitation signal to be
perfectly estimated. In that way the potential of the SE-System with envelope estimation due to
the proposed Deep-RNN is shown. Especially with bigger data sets and several noise scenarios,
architectural modification will be necessary, because the number of eight LSTM layers seem to
exploit the performance for the used data sets. A more sophisticated architecture, for example
using bidirectional LSTMs, could improve the results. Furthermore, there is a need for a suitable
approach on excitation estimation to complete the SE-System in a first stage. Due to insights
by successive increasing the number of speakers during parameter tuning, there is a need for
sophisticated test on speaker diversity found.
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