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Abstract: Deep Learning has become inescapable in all fields of research. It leads to 
unprecedented levels of prediction but is often associated with a loss in understand-
ing the considered phenomenon. This study aims on the contrary at taking advantage 
of the performance of Deep Learning to increase knowledge in speech production. 
The study explores more specifically the potential of Deep Learning as an original 
method to help at determining the cross-speaker vowel-specific articulatory invari-
ants, i.e. the stable articulatory features in the production of vowels. 228 midsagittal 
MRI data of 41 speakers articulating 6 vowels have been considered, for which man-
ually traced vocal tract contours are available and aligned in a common reference co-
ordinate system. Convolutional Neural Networks have been trained to classify the 
images in terms of vowel for five increasingly challenging classification scenarios, 
from two to six classes, in a leave-one-speaker-out scheme, with accuracies above 
99%. The Grad-CAM algorithm has been applied to all test images, resulting in 
heatmaps identifying the determinant vocal tract regions for a robust classification of 
the image. The edges of this region for each image have been aligned in the reference 
coordinate and averaged over all instances of a vowel for a scenario. The preliminary 
results show that a vowel can be robustly identified from the anterior part of the vo-
cal tract, even if the constriction, crucial for the acoustics, is located in the posterior 
part. Our approach demonstrates the potential of Deep Learning as a tool to increase 
knowledge in speech production. 

1 Introduction 

In the last years, Deep Learning (DL) has become inescapable in all field of research and 
speech sciences is directly concerned [1]. It has led to unprecedented prediction performance 
and led to exceptional breakthroughs. It is however often associated with a loss in interpreta-
bility of the considered phenomenon. This study aims on the contrary at taking advantage of 
the performance of DL to increase knowledge in speech production. 

In speech production, a core aspect is the setting of the position and shape of the vocal 
tract articulators to achieve the desired acoustic-articulatory targets. Vowels are usually 
achieved by specific articulatory settings, driven by acoustic targets such as the formants [2]. 
Complementary, a large inter-speaker articulatory variability is observed [3]. Determining the 
cross-speaker vowel-specific articulatory invariants, i.e. the stable articulatory features char-
acteristics for the production of the vowel, remains therefore challenging. Standard methods 
rely on normalisation procedures (see [3] for such a method and a short literature review). 
Determining the articulatory invariants has been taken as the case study to explore the poten-
tial of DL to contribute at solving this issue. 

The chosen approach consists in training a DL network to classify input Magnetic Reso-
nance Imaging (MRI) data of the vocal tract for different vowel classes. The network learns to 
identify on new image the characteristic features to perform the correct classification. These 
features represent the determinant vocal tract regions for the robust identification of the vow-
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els. An analysis of these determinant regions is then proposed. A similar method has already 
been attempted [4], but in the framework of articulatory-to-acoustic mapping. The authors 
showed that the trained network coefficients relate to the articulatory vowel space. In addi-
tion, they also exhibited the determinant regions for their classification task. The current study 
aims at deepening this approach by introducing newer and more performant networks and a 
state-of-the-art network analysis algorithm, and by focusing on the vocal tract regions as po-
tential markers of the articulatory invariants. 

2 Material and methods 

2.1 Data 

The data consist of midsagittal MRI images of the vocal tract recorded from 41 speakers sus-
taining for a few seconds vowels in their native language. The data constitute a subset of the 
data presented with more details in [5]. In this study, only a subset of the oral vowels was 
retained, leading altogether to 228 images from 41 speakers. A summary of the data is pre-
sented in Table 1. Because of the deep learning approach, the largest possible amount of data 
is necessary for the training, and in particular the maximum number of speakers for each 
vowel. For that purpose, the same vowels of different languages are grouped into the same 
classes, leading to the six cross-language vowel classes /i, a, u, o, ø, ε/. For the dataset #5, the 
vowel /æ/ has been associated with the class /a/ and the vowel /ɑ:/ with the class /o/; for this 
dataset, there is no image for the vowel class /ø/. 

For each image, manually outlined contours of the vocal tract and of parts of the face are 
also available. All articulation contours for a single speaker are aligned on a common refer-
ence coordinate system in centimetres based on the upper teeth and the hard palate. The artic-
ulation contours of all speakers are aligned together on common bony reference points of the 
cranium. Further details of this process are provided in [6]. An example of an image and its 
corresponding contours is visible in Figure 1. 

2.2 Method 

The approach consists in classifying the images by means of DL and in analysing the trained 
network to determine the strategy used by the network to take the classification decision. As a 
classification task can be performed very differently according to the number of classes, five 
increasingly challenging classification scenarios ranging from two to six classes have been 
considered (see Table 2). It is aimed to simulate the different strategies that could be imple-
mented to classify images from languages with two to six vowels.  

Table 1 – Overview of the datasets 

 Native language Male/Female Corpus Reference 

#1 French 6/5 [i a u o ø ε] [6] 

#2 French 1/0 [i a u o ø ε] [7] 

#3 German 7/3 [i: a: u: o: ø: ɛ:] [5] 

#4 German 1/1 [i: a: u: o: ø: ɛ:] [8] 

#5 English 8/9 [i: æ u: ɑ: ɛ] [9] 
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Figure 1 - MRI image taken from the data (left) and same image superimposed with the manually 
segmented contours (right) 

Table 2 – Classification scenarios 

Scenario Classes Number of images per class 

#1 /ε o/ 41 – 40 

#2 /a i u/ 41 – 41 – 41 

#3 /a i u ø/ 41 – 41 – 41 – 24  

#4 /a i u ε o/ 41 – 41 – 41 – 41 – 40 

#5 /a i u ø ε o/ 41 – 41 – 41 – 41 – 40 – 24  

 

For each scenario, the classification has been performed and evaluated in a leave-one-
speaker-out scheme. In this scheme, all the images of one speaker, i.e. between two and six 
images depending on the scenario, have been left out to serve as test images. The remaining 
images have been randomly split in 80% training images and 20% validation images. The 
training dataset has been augmented by creating for each vowel 100 artificial MRI images as 
follows: (1) 100 artificial articulation contours have been randomly generated as random line-
ar combinations of the existing articulation contours of the training data, (2) for each artificial 
contour, the closet existing articulation contour of the training data has been identified and (3) 
the corresponding image has been warped using the existing articulation contour points as 
source landmarks and the artificial contour points as target landmarks. An example is visible 
in Figure 2.  

A pre-trained EfficientNet B0 Convolutional Neural Network (CNN) [10] has been loaded 
and trained with the augmented training data. The trained network has then been evaluated on 
the test images. This procedure has been repeated until all speakers have served exactly once 
as test speaker. Proceeding this way ensures that the trained networks are evaluated on speak-
ers that have not been used for the training. The drawback is that it requires to train as many 
networks as speakers for each scenario and that each test speaker is associated with a different 
network. 

For each scenario, the overall classification accuracy is provided. Although the objective 
in this study is not to achieve the best possible accuracy, bad classification results would im-
ply that the networks are not able to perform robust classification and would raise doubts on 
the results of the study. 
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Figure 2 – Augmented image for the vowel /u/ 

For all correctly classified images, the Grad-CAM algorithm [11] has been applied on all 
convolutional layers of their corresponding network. This algorithm calculates the gradient of 
the output of a network layer. It outputs a matrix of size similar to the size of the layer image 
and is automatically resized to the size of the input image according to the rules used by the 
network. The result is a heatmap image which can be overlaid on the input image to highlight 
the regions playing an important role in the current layer. In a CNN, the image resolution de-
creases with the layers of the network to concentrate on meaningful features to perform the 
task. For this reason, the Grad-CAM outputs calculated on the first layers tend to have higher 
resolution but lower significance while outputs calculated on the last layers tend to have lower 
resolution but higher significance. For the last layer, the Grad-CAM output highlights the im-
age regions on which the final classification score is calculated. Taking the average of the 
Grad-CAM outputs of all layers of a network highlights the regions playing a recurring im-
portant role towards the final classification result. In other words, the last layer Grad-CAM 
output may inform about the regions on which the classification decision is taken while the 
average Grad-CAM output may inform about the reason why the last layer region emerged 
(see Figure 3 for an example). 

From each last layer Grad-CAM output, a surface equivalent to 12 square centimetres en-
compassing the most significant region for the classification decision has been extracted. The 
results have then been averaged together with the associated articulation contours over all 
instances of each vowel of each scenario. It provides for each vowel of each scenario the most 
significant region for the classification decision. 

3 Results 

The classification accuracy for each scenario is visible in Table 3. An example of Grad-CAM 
outputs is presented in Figure 3. The results for the surface averaged over all instances of each 
vowel of each scenario have been presented for the two extreme scenarios, i.e. two (Figure 4) 
and six (Figure 6) classes classification, as well as for the /a i u/ scenario containing the quan-
tal vowels (Figure 5). In order to visualise whether the most significant region can be different 
according to the scenario, the Figure 7 displays for the vowels /a i u/, present in four of the 
five scenarios, the edges of the same surfaces for the four scenarios where they are present. 
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Table 3 – Classification accuracy for each scenario 

#1 #2 #3 #4 #5 

100% 100% 99.3% 99.5% 98.7% 

 

  

  

Figure 3 – MRI image of [i] superposed with the output of the Grad-CAM algorithm for the scenario 
/a i u/ averaged over all network layers (top left), for the last layer only (top right) and for the last lay-
er only superimposed with the articulation contours (yellow) and the edges of the surface of 12 cm² 
around the most significant region (black) (bottom left). Same articulation contours and surface edges 
in the common reference coordinate system in cm (bottom right). 

 

 

Figure 4 - Averaged contours of the vowels superimposed with the averaged most significant regions 
for the classification decision for the scenario /ε o/. 
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Figure 5 - Averaged contours of the vowels superimposed with the averaged most significant regions 
for the classification decision for the scenario /a i u/. 

Figure 6 - Averaged contours of the vowels superimposed with the averaged most significant regions 
for the classification decision for the scenario /a i u ø ε o/. 

 

 

Figure 7 - Averaged contours of the vowels superimposed with the edges of the averaged most signif-
icant regions for the classification decision for the scenarios #2 to #5. 
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4 Discussion and conclusion 

We can observe the high level of performance of the networks despite the relatively limited 
training data for a deep network. This ensures that the features extracted from the images by 
the networks are robust features to take the classification decision. 

Consistently for all vowels of all scenarios, despite some outliers, the classification deci-
sion is taken from the anterior part of the vocal tract, with small variations depending on the 
vowel and the scenario. It can also be observed that the classification scenario, more or less 
challenging, has only little influence on the region on which is taken the decision. We can see 
in Figure 7 more variability for /u/ than for /a i/, but it remains in the anterior part of the vocal 
tract. This suggests that the regions are in itself robust for a classification decision and de-
pends only little on the list of other vowels it has to be discriminated from. 

It is known that the vocal tract constriction is crucial for the vowels to achieve the desired 
acoustic targets and tends therefore to show less inter-speaker variability [3], forming a good 
candidate marker to identify a vowel. While the constriction seems indeed to emerge as the 
decisive region for the classification of /i/, it is not the case for the back vowels /a u o/. Ra-
ther, it seems that the realisation of a constriction leads to complementary open regions 
somewhere else in the vocal tract (buccal cavity for /a/, front cavity for /u/) from which a ro-
bust identification of the vowels appears possible. Further analyses are necessary to confirm 
and quantify these preliminary results. 

The Figure 3 helps to understand the process of the network leading to the final classifi-
cation decision: for the represented instance of the vowel /i/, it identifies the region containing 
the edges of the palate and tongue blade and takes the decision from this region. Further anal-
yses are required to take deeper advantage of this representation in the interpretation of the 
most significant region for the classification decision. 

Due to the relatively limited data for DL training, a leave-one-speaker-out rotating 
scheme was chosen. This led to the generation of a different network for the evaluation of 
each speaker of each scenario. For consistency, it would be better to have a single network per 
scenario. This calls for more data, although this might partly be solved in the future by data 
augmentation. 

The initial motivation was to test whether the classification process would vary according 
to the number of vowels in the vowel system of a language, assuming that languages with a 
large number of vowels would require a decision taken on decisive regions while languages 
with a limited number of vowels could allow more flexibility. This led to the construction of 
the five scenarios of the study. However, due to the limited number of data, the vowels of 
languages with different number of vowels in their vowel system were mixed, limiting the 
possible conclusions on that matter: first the realisation of vowels of different language might 
slightly differ and second the production of a [a] in a three-vowel system language might al-
low much more articulatory flexibility than the production of a [a] in a ten-vowel system lan-
guage for instance. In other words, the realisation of a vowel depends on the number of vow-
els in the vowel system. Further analyses involve the design of language-specific scenarios. 

The preliminary results show that in terms of articulation, a vowel can be robustly identi-
fied from the anterior part of the vocal tract, even if the constriction, crucial for the acoustics, 
is located in the posterior part and tends to show smaller inter-speaker variability. It further 
suggests that constrictions and open regions might be complementary associated, and that the 
realisation of a vowel articulation could also be driven by the obtention of specific open re-
gions, having an impact on the motor planning. Finally, our methodology shows the potential 
of DL as a tool for further understanding speech production mechanisms. Planned further 
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analyses include quantitative characterisation and more realistic language-specific scenarios 
comprising all vowels and possibly consonants. 
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