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Abstract: The paper describes a model for cortical segmentation of the auditory signal
into syllables. Segmentation is based on a 6-oscillator realized by an inter-neuronal
network gamma (PING) structure, where the position and duration of each syllable is
given by a related 0-cycle. The paper is focused on improving features, which drive the
0-oscillator. We hypothesize that the 0-oscillator is driven by ‘V-edge-neurons’. These
neurons have been observed in the superior temporal gyrus (STG) which spike at the
maximal rise of the envelope of the auditory signal at the onset of the nucleus (vowel)
of a syllable. The paper is focused to model the V-edge-neurons. We hypothesize, that
the V-edge-neurons have as input two kinds of CB-features [13] processed in critical
bands (CB). The first kind are edge features derived from the instances of maximal in-
crease of the partial loudness curve from each CB. The second kind are sustained fea-
tures derived from CB-modulation features indicating the presents of vowel-onsets. The
developed 0-oscillator is evaluated using a labeled speech database. The evaluation is
based on the correctness of the match between the position of the syllables and the 6-
cycles given by the sequences of 0-spikes emitted by the 6-oscillator. Compared to [2,3]
considerable progress in correctness has been achieved from 80% to 90%.

1 Introduction

There is high evidence that speech perception is the transformation of the continuous streams
of signals delivered from audio-visual sensors (ears and eyes) to a multi-item neural code of
syllables constructed by subcodes describing articulatory gestures of the onset, the syllabic ker-
nel and the coda of a syllable [5,25]. In the following we assume that the syllabic kernel is a
vowel or a complex of vowels, as in many languages. Thus, the parts of the syllables are onset,
vowel(s) and coda lead to the concept OVCs [24,26]. In this framework, the task of perception
is to segment and to classify the OVCs. This process is far to be understood.

The paper is focused on mimicking the cortical segmentation of the continuous stream of the
audio-signal into syllables using 0-oscillations [5,4]. This cortical process is quite different to
the segmentation performed nowadays in automatic speech recognition (ASR), where segmen-
tation is solved by a search algorithm including a language model [15]. In the starting time of
ASR, in the 1970th, it was aimed to mimic the human approach in segmenting speech into
phonetic units This approach was implemented by ‘knowledge-based rules’ derived from in-
spection of the short-term spectra of speech [1]. Yet this approach failed, and still nowadays,
no competitive algorithm mimicking the human approach has been found. Nevertheless, it is
useful to investigate the human approach as it implements a bottom-up driven interface deliv-
ering syllables. This interface separates acoustic from symbolic processing, allows to integrated
easier visual input (lip reading) and consumes less computing power.

In the last 20 years, neuroscience increased substantially the knowledge in cortical processing
of speech, achieved mainly by measuring the activity of neurons with cortical electrocorticogra-
phy (ECoG) in clinical settings [16]. With this technology, currently the local field potentials
(LFP) of about 200-500 neurons located at the surface of the brain can be measured simultane-
ously. With this technology the LFPs of neurons located in deeper layers (lamina) of the brain
are measured imperfectly (see fig.1 in [16]). To overcome the problem of missing cortical



knowledge, hypotheses are postulated, whose evidence are checked by correlations between
events of the speech signal and the output of measured neurons, by psycho-acoustic measure-
ments, and by measurements of the activity of mammal neurons located in deep layers of areas,
which have the same functionality as human layers.

Publication of papers mimicking the human approach in segmenting speech are scarce. We
follow the approach presented in [4] applied in [2,3], where the segmentation is performed by
an 0-oscillator driven by features derived from the auditory signal. This paper is focused in
improving the models of these features, which include recent cortical measurements and which
increase the correctness in segmentation. The paper is organized as follows: In section 2 the
architectures and the functionality of the modules constituting the 6-oscillator is given. Section
3 — the core of the paper - describes the features driving the 0-oscillator. Section 4 is devoted
to the implementation and evaluation of the proposed 8-oscillator.

2 The 0-Oscillator

There is increasing evidence that the segmentation of the auditory signal into syllables is per-
formed by 6-oscillations observed in the STG [5]. The frequency and phases of the 8-oscillation
are event driven depending on the rhythm of the syllables. The position and duration of each
syllable is related to the phase and the duration of a single 6-cycle. As discussed later the ‘cor-
tical’ syllable is different to the phonetical syllable, as the cortical syllable starts with the onset
of the vowel(s). We follow the approach [4] that the 0-oscillator is generated by an inter-neu-
ronal network gamma (PING), as found in the thalamus, driven by specific features derived
from the auditory signal.

Figure 1: Architecture of the 6-Oscillator: The speech signal is transformed to the auditory signal processed in
critical bands (CB). For each CB, edge and sustained features are the input of a V-edge neuron, which outputs
spikes driving the PING.
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Fig.1. shows the architecture of the proposed 0-oscillator. The output of the 0-oscillator are
spikes called 0-spikes spiking at instances tp;ys. Thus, the 6-oscillator delivers no oscillations,
but spikes determining the position and duration of a syllable. For a perfect 0-oscillator, two
adjacent instances of tp;y¢ define a 6-cycle related to the position and the duration of a syllable.
The core of the architecture is the ‘V-edge neuron’ which models the functionality of neurons
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measured in [6,7] spiking at the maximal increase at the rise of the envelope of the auditory
signal at the onset of the nucleus of a syllable, where in most languages the nucleus is a vowel
or a complex of vowels. In the following we call the measured neurons ‘V-edge neurons’. We
assume, that the V-edge neurons are not perfect, otherwise no PING would be needed. As
shown in section 4, the PING has the property to remove erroneous spikes emitted by the V-
edge neuron not relating to the instances tp;ys, and adds missing spikes not detected by the V-
edge neuron.

The properties of the 0-oscillator above are based on some measurements, but still following
hypothesis are needed to derive the architecture (fig.1):

e a PING generates 0-spikes at instances tp;yg, Where two adjacent spikes determine
the phase and duration of a 8 cycle.

e The PING is driven by a V-edge neuron - a model for the V-edge neurons driven by
edge and sustained features generated within critical bands (CB-features).

o the 0-spikes are synchronously to the spikes of the V-edge neurons. Thus, a 6-cycle
defines the position of a syllable by the position of adjacent instances of maximal
rises of the modified loudness curve within syllabic kernels.

This section ends with the description of the first module of the 0-oscillator generating the au-
ditory signal and its envelope. The other modules are described in section 3 and 4.

The generation of the auditory signal is implemented by an Gammatone filter bank organized
in critical bands CB (tool-box [19]). For the needs of the 8-oscillator the filter bank is reduced
by a set of 10 CBs (CBy, ... CBio) with center frequencies 248, 328, 420, 529, 655, 803, 974,
1175, 1409, 1682 Hz adapted to the frequency ranges of vowels. The filter bank delivers as
output the signals z, (¢, F), k = 1, ...,10 in an analytic form. The signal |z, (t, F,)| is the am-
plitude modulated part of z, (¢, Fy). Using a lowpass with an IR impulse response hrp,

CB-AM(t, hyp, k) = 20l0gs0 [ 121 (t, F)| hyp(t— )dT; k = 1,....,10 (1)

is a smoothed and log compressed version of |z (¢, F,)| defining the auditory signal.

3 The V-edge Neuron

The V-edge neuron is implemented as a single bio-physical neuron, which models the complex
of neurons measured in [6,7]. This complex is called V-edge neurons. It is an open question,
whether the input of the V-edge neurons are CB-features related to critical bands. CB-features
are generated in the inferior colliculus (IN) [17] or in the ‘speech-region’ of the STG [13,14].
The functionality of the CB-features produced in the IN is common to all mammals [17] and
well explored, whereas the CB-features produced in the speech region of the STG are specific
for humans and less explored. We assume that the input of the V-edge neurons is given by
specific CB-features produced in the IN and further processed in the STG. These features be-
long to the class of specific edge and sustained features:

= edge features called env-edge features’, which describe ‘edges’ of the envelope of the
partial loudness curves [8,9] given by the instants of their maximal rises.

= sustained features, called V-onset features, which describe the presence of the onset of
vowels in the auditory signal. In the STG the presence of vowels has been measured
in [10].

We assume, that the env-edge features are IN-features indicating edges of the partial loudness
[9]. The V-features have the task to prevent the V-edge neuron to spike at rises in non-vowel
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regions (consonants). In the following subsections the modules generating the env-edge fea-
tures and the V-onset features are described.

3.1 The env-edge Features

In [2,3] the CB-loudness is defined to be identical to the CB-AM(t, hrp, k) curve (eq. 1). It
turned out that this signal is quite noisy concerning instances of maximal rise. Recent measure-
ment [9] come to the conclusion, that for each CB the partial short-term loudness (ST-CB-
loudness) is generated as CB-features in the IN. The transformation of the CB-AM(t, hyp, k)
curve (1) to the ST-CB-loudness is given by following algorithm [9]:

Samples S, representing the CB-AM(t, hrp, k) (see eq. (1)) are transformed to the signal Sy,
representing the samples of ST-CB-loudness (¢, k) according to

{aaSn +(1—-ay)S,_,forS, >S,_;

S =1 a,S, + (1 — a,)S,_, forS, <S!_.

2

At At
ag=1-eTa;a, =1—e T, = 0.045 [s]; T, = 0.02 [s]; At = .
fs denotes the sampling frequency of the CB-AM-signal (1).
In a second step the ST-CB-loudness is transformed by an automatic gain control (AGC) to a
signal AGC (ST — CB — loudness). Compared to [2,3] it turned out that the AGC increases the
correctness of detect maximal rises (see section 4). The AGC is implemented by the following
algorithm transforming samples x, to samples yn.

YV = gaing * x,; gain, = a * (level — y,_,) + gain,_, 3)

The gain factor a determines the speed of adaptation of y to a reference level (level). a is tuned
to achieve an adaptation of y to the value ‘/evel” within the duration of an average syllable
(180ms). To avoid overshoots, the adaptation is stopped in regions of pauses (non-speech) de-
tected as low-level signals. Given the curves of AGC (ST — CB — loudness), areas of increase
of the curves are determined. Areas of ripples in the curves are concatenated to larger areas.
According to some heuristic rules some areas are deleted leading to final areas of increase. For
the resulting areas the instant of maximal rise is extracted. The sequences of the instances of
the rises constitutes the env-edge features modelled by pulses with a value given by the stiffness
of the area of increase as done in [2,3].

3.2 The V-onset Features

The V-onset features should indicate the presence of the onset of a vowels or complexes of
vowels. Due to the lack of cortical measurements of neurons generating such features, we im-
plemented a GMM classifier for each CB. For each feature vector V, (¢t,,) (eq. 4) the classifier
determines the probability of 4 classes: pause, consonant, vowel, and onset of vowels. The fea-
tures used to train and test the GMMs are modulation features as found in the STG [14]. In our
implementation these features are given by a STFT transformation [18,20, 21] of the CB-AM
signal (1) normalized by the AGC (3) leading to the signals

yi™ () = AGC(CB — AM(t, hyp, k) k = 1, ....,10.

The STFT transforms y{™(t) to feature vectors Vj(t,) with dimension dimg, sampled at in-
stances t, with A(t,) = 10ms. dimg denotes the number of modulation frequencies (); used:

YAM(t,w, Q) = fjc:o y,fM(T)WQi(t —1)e/%dr ;k=1..10;i= 1, ..., dimg

MFKIi(tn) = |YkAM(tnv w, Qi)l; A(ty) = 10ms
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Vie(tn) = [MFKL, ..., MFKZ™); k=1,...,10 )

We use as STFT-windows wq Gaussians N (0, 05), which has the best spectro-temporal reso-
lution [20]. The width of the windows is determined by the value of gy adapted to Q: for low
frequencies (), the window is large to model the modulation of stationary sounds as vowels; for
high frequencies (1, the windows are smaller to model non-stationary sounds as onsets. This
implementation seems to be consistent with the measurements in [14].

For training the GMMs, the vectors Vy (t,,) must be aligned to the classes to be classified using
the labels of the speech data base. The alignment of the class onset of a vowel is defined by an
‘onset- region’ of 40ms with distances +-20ms from t,..; defined in subsection 4.2.2. t,..r de-
notes the instance of maximal increase of a modified loudness at the onset of a vowel.

Recognition experiments on the 4 classes showed that the highest recognition rate was achieved
for the class onsets of the vowels (see subsection 4.2.1). Due to this property, we use as V-onset
feature the probability of the presence of the class onset of a vowel and not the class vowel.

4 Experiments

4.1 Implementation of the Modules of the 0-Oscillator

The V-edge neuron and the PING are modelled by a simplified bio-physical Hodgkin-Huxley
model [22,4], whereas the other modules are implemented as ‘engineering models’ as described
below. The modelling of oscillations is done easier in bio-physical neuronal models, because
the phase and duration of cycles of the 0-oscillations corresponds directly to the instances of
the spikes provided by the V-edge neuron and the PING. To decrease the time needed for sim-
ulation, the generation of the auditory signal is done by an engineering approach not using bio-
physical implementations. This approach is justified by the precise models available [18]. Due
to missing measurements in the speech area of the STG, the generation of the edge and sustained
features shown in fig.1 are engineering models implemented by ‘invented’ algorithms designed
for optimal performance in generating correct 6-spikes.

To couple an engineering model to a bio-physical neuron we use two methods. Either the output
of the engineering model are pulses, which are interpreted as spikes entering as input to bio-
physical modeled synapses, or the output of the engineering model are values, where the values
are interpreted as ion-currents fed directly into the cell of the Hodgkin-Huxley model. The 6-
oscillator is implemented in matlab running in real time on a 4-core laptop.

4.2 Evaluation

The 0-oscillator is evaluated by a speech database containing 1300 phonetically diverse utter-
ances (read speech from a professional British speaker) [23, 2]. The database is phonetically
labeled and designed for articulatory research as done in [24] to detect the 6-oscillation in
speech production.

Four kinds of evaluation are performed to determine the quality of the V-onset features, the
env-edge features, the V-edge neuron and the PING. The V-onset features are evaluated in
subsection 4.2.1. The other evaluations are done by comparing trains of spikes as described in
subsection 4.2.2.

4.2.1 Evaluation of the V-onset Features

As intermediate result, the GMM-classification determines for each feature vector Vi (t,,) (4)
the probability of presence of all the four classes pause, consonant, vowel, onset of vowel. If
the class with the highest probability is not consistent with the label of the database an error is
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counted. The error rates averaged over all V,(t,),k = 1...10 are shown in tab.1. The low
error rates of 4% for the class onset of vowels is quite astonishing. It seems that the feature
vectors Vi (t,) fit well to detect the onset of a vowel or a complex of vowels.

Table 1: Error rates in % for the 4 classes in dependence on the number of modes used for the GMMs. In these
experiments dimo=9 is chosen.

number of modes pause consonant vowel onset of vowels
4 21 8 12 4
8 0 31 15 4
32 0 29 15 4

4.2.2 Evaluation of Train of Spikes

For evaluation we compare the train of pulses or spikes emitted at instances t,q4, With reference
trains at instances t,.. An instance t,.r is defined as the maximal rise of a modified loudness
curve at the vowel onset. The modified loudness is defined as the sum of the partial loudness
of CB4y, ..., CB1o. The position of the region of the vowel onset is derived from the labels of the
vowels as described in subsection 3.2. Ideally, the instance t,. should be in accordance to the
spiking of the V-edge neurons. Whether this is true is an open question. For illustration the
instances t,.s are depicted in fig. 2 for the utterance ‘Jack Webster’.

Figure 2: curves: speech signal of utterance ‘Jack Webster” with the envelope of the modified loudness, the pulses

at instances t,; and the position (rectangle curve) of the 3 vowels. As the partial loudness of the selected CBs do
not cover the frequencies of the fricative ‘s’ in Webster’, the modified loudness shows no maximum at this sound.
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The correctness of an instance t.q4, is defined by the distance to a related reference instance
tref: we define an instance tpq4, as correct, whenever the relation

| tref — tedge | < maxDist,.; ; maxDist,.; = 0.070 [sec] &)
holds. The value of maxDist, is quite conservative due to the lack of cortical measurements.
Applying this definition, missing (deleted) and inserted 6-spikes can be defined leading to the
percentage of correct detection and the percentage of deletion- and insertion errors. This meas-

ure of correctness is applied to pulses/spikes t.44, from the env-edge features, the V-edge neu-
ron and the PING.

As baseline for judging improvements of the correctness, we use the results achieved in [2] for
the 0-spikes of the PING as depicted in tab.2.

Table 2: Correctness of instances t,q4. of the PING for 181 utterances (2491 syllables) using two settings S1 and
S2 of parameters

Setting Correct % Insertion % Deletion %
S1 79 30 19
S2 82 36 15
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As shown tab.3, the correctness of the instances tp;y; depends on the correctness of the in-
stances ty_eqge Of the V-edge neuron. The output of the V-edge neuron is determined by its
input — the env-edge and V-onset features for all CBs. For illustration of the natures of these
features, fig. 3 shows their plot for the same utterance ‘Jack Webster’ as above for 3 CBs.

Figure 3: From left to right pulses/spikes teqge together with t,..r from CB, (248Hz), CB2(328Hz), CB; (420Hz);
Top: instances of t,..r; Middle: env-edge pulses weighted with stiffness; Bottom: probabilities of V-onset features.
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Tab. 3 shows the correctness of instances tpq4e Of the env-edge features, the V-edge neuron
and the PING for specific settings of parameters. The percentage of error rates and correct de-
tected of £opp_eqge Trom the env-edge features are averaged over all 10 CBs. They show high
error rates in missing spikes. As the spikes of all CBs are input to the V-edge neuron many
spikes are recovered, but many insertions pop up. Finally, the PING removes many of the in-
serted spikes, but loose some already detected correct spikes. As shown for setting 2, the cor-
rectness of the PING can be increased, but to the cost of increase of insertion errors. The mech-
anism for deleting and adding spikes is described in detail in [2,3]. The mechanism for deleting
inserted 0-spikes is performed by deleting all spikes, which are close together. Only the first
spike is maintained. The insertion of missing 0-spikes is performed by injecting a constant cur-
rent into the PING, which increase its sensitivity for input in the range of the instances of the
expected 0-spike. Comparing the of instances t,q4, of the PING in tab.2 with those of tab. 3,
the achieved improvements in correctness are evident.

Table 3: correctness for different setting S1, S2.

Setting teage Correct % Insertion % Deletion %
S1 env-edge feature 62 6 37

S1 V-edge neuron 93 139 6

S1 PING 89 16 10

S1 env-edge feature 62 6 37

S2 V-edge neuron 94 163 5

S2 PING 91 19 9

5 Conclusion

The paper describes a model to mimic cortical generation of 6-oscillations. Compared to [2,3]
large improvements on correctness of the 6-spikes are achieved. The improvements were gained
by using the AGC transformed partial loudness to generate the instances of maximal rise and
the use of the V-onset features to detect the presence of vowel onsets. Yet the gap to human
performance is still large.

The architecture proposed allows many improvements to be implemented. Hopefully, in the
near future spectro-temporal receptive fields (STRFs) as described in [13,14], relating to the
env-edge and V-onset features, will be measured, which can be used to achieve human perfor-
mance.

15



6 References

[1] LOWERRE, P.T.: The Harpy speech recognition system. In Ph.D. Thesis Carnegie-Mellon
Univ., Pittsburgh, PA. Dept. of Computer Science,1976.

[2] HOGE, H.: A Cortical Model for a 0-Oscillator Segmenting Syllables. In Proc. ITG, 2021.

[3] HOGE, H.: Cortical Segmentation of Syllables. In Proc. ESSV, 2021.

[4] HYAFIL, A., L. FONTOLAN, C. KABDEBON., B. GUTKIN, and A. GIRAUD: Speech encoding
by coupled cortical theta and gamma oscillations. In eLife, DOI: 10.7554/eLife06213,
2015.

[5] GIRAUD, A.L. AND D. POEPPEL: Cortical oscillations and speech processing: emerging
computational principles and operations. In Nat. Neuroscience 15(4), pp. 511-517, 2015.

[6] OGANIAN, Y. and E. F. CHANG: A4 speech envelope landmark for syllable encoding in hu-
man superior temporal gyrus. In Science Advances, 2019.

[7] KonMa, K., Y. OGANIAN, C. CAIL, A. FINDLAY, E. CHAN AND S. NAGARAJAN: Low-frequency
neural tracking of speech envelope reflects evoked responses to acoustic edges. In Preprint,
2020.

[8] B. MOORE, B.R. GLASBERG, A. VARATHANATHAN AND J. SCHLITTENLACHER: A Loudness
Model for Time- Varying Sounds Incorporating Binaural Inhibition. Trends in Hearing,
Vol. 20, 2016.

[9] THWAITES, A., J. SCHLITTENLACHER , [. NIMMO-SMITH, W. D. MARSLEN-WILSON , B. C. J.
MOORE: Tonotopic representation of loudness in the human cortex. In Hear. Res. 344: 244—
254,2017.

[10]MESGARANI, N., C. CHEUNG, K. JOHNSON, AND E.F. CHANG: Phonetic Feature Encoding in
Human Superior Temporal Gyrus. In Science, 343(6174), pp.1006—-1010, 2014.

[111HOGE, H.: Using Elementary Articulatory Gestures as Phonetic Units for Speech Recogni-
tion. In Proc. ESSV, 2018.

[12]OPOKU-BAAH, C., SCHOENHAUT, A. M., VASSALL, S. G., TOVAR, D., A., RAMACHAN-
DRANND, R., WALLACE M., T.: Visual Infuences on Auditory Behavioral, Neural, and Per-
ceptual Processes: A Review. In JARO, 2021.

[13] L.S. HAMILTON, E. EDWARDS, F. EDWARD, E.F. CHANG: 4 Spatial Map of Onset and Sus-
tained Responses to Speech in the Human Superior Temporal Gyrus. In Current Biology
28, pp. 1860-1871, 2018

[14]HULLETT, P. W., L. S. HAMILTON, N. MESGARANI, C. E. SCHREINER and E. F. CHANG: Hu-
man Superior Temporal Gyrus Organization of Spectrotemporal Modulation Tuning De-
rived from Speech Stimuli. In Journal of Neuroscience, 36 (6) 2014 — 2026, 2016.

[15]NEY, H.; The Use of a One Stage Dynamic Programming Algorithm for Connected Word
Recognition. In IEEE Trans. In Acoustics, Speech and Signal Processing, Vol. ASSP-32,
No.2, pp.263-271, 1984.

[16]G. BUuzSAKIL, C. A. ANASTASSIOU AND C. KOCH: The origin of extracellular fields and cur-
rents — EEG, ECoG, LFP and spikes. In Nat. Rev. Neuroscience 13(6), pp. 407-420, 2016.

[177WINER, J. A. and C. E. SCHREINER: The Inferior Colliculus. New York: Springer, 2005

[18]CHi, T., Ru, P., SHAMMA, S. A.: Multiresolution spectrotemporal analysis of complex
sounds. In J. Acoust. Soc. Am. 118, August 2005, pp. 887-906.

[19]HOHMANN,V.: Frequency analysis and synthesis using a Gammatone filterbank. In Acta
Acoustica United with Acustica, Vol 88, pp.433-442 2002.

[20] T.F. Quatieri, Discrete Time Speech Signal Processing. Upper Saddle River, NJ: Prentice
Hall PTR, 2002.

[211Ho6ge, H.: Modeling of Phone Features for Phoneme Perception. In ITG, Leipzig 2016.

[22]1W. Gerstner and W. Kistler, “Spiking Neuron Models,” Cambridge University Bridge, UK
2002.

[23]R1CHMOND, K., P., HOOLE and S. KING: Announcing the Electromagnetic Articulography
(Day 1) Subset of the mngu(Q Articulatory Corpus. In Interspeech, pp. 1505-1508, 2011.

[241HOGE, H.: Extraction of the O- and v-Cycles Active in Human Speech
Processing from an Articulatory Speech Database. In ESSV, 2019.

[25]1 HOGE, H.: The nature of the articulatory code. In Proc. Konferenz Elektronische Sprach-
signalverarbeitung (ESSV), 2020

[261HOGE, H.: The Articulatory Code and Related OVC-Gestures. In ITG, 2018

16



