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Abstract: The key to a successful simulation of speech acquisition with a paramet-

ric articulatory synthesizer lies, inter alia, in the successful exploration of its ar-

ticulatory dimensions. However, such an exploration (regardless of the respective

algorithm) may be non-trivial due to the high dimensionality of a modeled vocal

tract and the associated high probability of creating unnatural or humanly impos-

sible vocal tract shapes. In this work, a method based on principal component

analysis is used to reduce the scope of motor space of the articulatory synthesizer

VOCALTRACTLAB. It is shown that such a technique can be used to increase the

computational efficiency of vocal learning simulations and thus may help to estab-

lish better exploration-based acoustic-to-articulatory-inversion models.

1 Introduction

Simulations of early human vocal learning are of great importance because they may provide

answers to questions both in the fields of phonetics and child development as well as in the

area of motor learning [1]. Speech acquisition also represents a type of acoustic-to-articulatory

inversion that has potentially great utility for both speech synthesis systems and speech recog-

nition, e.g. in situations that only allow for a low amount of speech resources [2].

When it comes to simulating the imitative vocal learning process, articulatory synthesizers are

particularly well suited because they allow full control over the articulatory dimensions, and

thus the simulation of motor learning [1, 3]. In contrast to the direct learning of the motor

trajectories as in [4], the early vocal learning scenario requires the objective function to be com-

putable from observables. Since most articulators are unobservable, the objective function must

be based on the consequences of the articulatory movements, i.e. acoustic information. Thus,

a speech acquisition simulation can be seen as a reinforcement learning process, whereby an

agent (the learner) tries to develop an action space based policy in order to produce an acous-

tic consequence similar to an observed reference. Such a simulation is technically challenging

because acoustic similarity does not necessarily correspond to perceptual similarity due to the

following reasons:

• Speech sounds to be imitated (references) and the produced imitations may be misaligned

in terms of timing in a non-linear, time-dependent way.

• Acoustic templates and imitations may be misaligned in terms of frequencies in a non-

linear way, which is due to the vocal tract differences among the speaker and the target-

speaker. This is also known as the speaker-normalization problem.

51



Description Parameter Minimum Standard Maximum Unit

1 Hyoid position (horz.) HX 0.0 1.0 1.0 cm

2 Hyoid position (vert.) HY -6.0 -4.75 -3.5 cm

3 Jaw position (horz.) JX -0.5 0.0 0.0 cm

4 Jaw angle JA -7.0 -2.0 0.0 deg.

5 Lip protrusion LP -1.0 -0.07 1.0 cm

6 Lip distance LD -2.0 0.95 4.0 cm

7 Velum shape VS 0.0 0.0 1.0

8 Velic opening VO -0.1 -0.1 1.0 cm2

9 Tongue body (horz.) TCX -3.0 -0.4 4.0 cm

10 Tongue body (vert.) TCY -3.0 -1.46 1.0 cm

11 Tongue tip (horz.) TTX 1.5 3.5 5.5 cm

12 Tongue tip (vert.) TTY -3.0 -1.0 2.5 cm

13 Tongue blade (horz.) TBX -3.0 2.0 4.0 cm

14 Tongue blade (vert.) TBY -3.0 0.5 5.0 cm

15 Tongue root (horz.) TRX -4.0 0.0 2.0 cm

16 Tongue root (vert.) TRY -6.0 0.0 0.0 cm

17 Tongue side elevation 1 TS1 0.0 0.0 1.0 cm

18 Tongue side elevation 2 TS2 0.0 0.0 1.0 cm

19 Tongue side elevation 3 TS3 -1.0 0.0 1.0 cm

Table 1 – The supra-glottal parameters of the articulatory synthesizer VTL.

• Measuring the distance between acoustic representations (such as spectrograms) of a ref-

erence and imitations requires careful normalization and a weighting of specific parts

such as consonants and vowels.

These issues make it difficult, if not impossible, to directly compare template and imitated

utterances, e.g. by calculating the spectral distance between both. This even applies in the case

of copy synthesis, where the same vocal tract is used for references and imitations. While these

problems may be solved with the help of neural networks, which can translate the time series

input into percept-vectors, another issue persists:

• Any search or optimization of speech parameters suffers from the curse of high dimen-

sionality, as articulatory synthesizers typically have numerous degrees of freedom.

This issue may be addressed by constraining articulatory parameters to specific values or ranges

that are motivated by phonetic knowledge [2]. However, such constraints may not generalize

among different articulatory synthesizers and, even more importantly, introduce explicit ex-

pert knowledge into the simulation that a real learner may not have. In this work, principal

components (PCs) are used to span a subspace of natural vocal tract shapes. Several ways

are shown in which this space can be used to circumvent the problem of unnatural vocal tract

configurations. While this study is specific to the state-of-the-art [5] articulatory synthesizer

VOCALTRACTLAB (VTL) [6] version dev-2.4, the proposed techniques are general approaches

that can potentially be extended to other parametric articulatory synthesizers as well.

2 Methods

2.1 VocalTractLab

VTL is an articulatory speech synthesizer that provides a realistic human vocal tract model,

based on magnetic resonance imaging (MRI) data. The synthetic speech is generated via a
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one-dimensional aero-acoustic simulation of the vocal tract dynamics. Three different types

of glottis models are available. While the VTL allows for model-based high level controls,

such as phoneme-to-speech [7] via so called gestural scores, a direct low-level operation of

the individual articulatory parameters, which is the prerequisite for the simulation of speech

acquisition, is also possible. The current VTL vocal tract model is controlled by 19 supra-

glottal parameters (see Table 1) and either 6 or 11 glottal parameters, depending on which

glottis model is selected. In this work the geometric glottis model with 11 parameters is used,

which is the VTL default. However, glottal parameters are not the subject of this study.

2.2 Principal Component Space

VTL provides 69 predefined vocal tract shapes that represent most of the German phonemes.

These shapes were derived from MRI data and thus, are biologically plausible. Principal com-

ponent analysis (PCA) models can be trained on a specific number of the 19 dimensions of

the predefined shapes. For general purposes it is reasonable to exclude the parameters VO,

TRX, TRY for the following reasons: The velum opening parameter VO is orthogonal to all

other dimensions as it can be independently controlled in order to introduce nasality to a certain

speech sound. As long as no nasal sounds should be created it can (and should) be set to its

default value of −0.1 (velum closed). The tongue root parameters TRX and TRY can be set

to any arbitrary value because the VTL allows for an automatic calculation of the parameters.

Only if the vocal tract model geometry itself was modified, e.g. by scaling the model, a manual

adjustment of these parameters would be needed. Further, the parameter TS3, which controls

the side elevation of the tongue tip may be excluded because it has no significant impact on the

plausibility of a given shape. However, in case that this parameter is excluded, it must be fixed

or resampled after PC decoding. This may be acceptable if the goal of the PC transformation is

a general sampling over certain parameter ranges. However, if the goal is to integrate the PCA

model in an active optimization strategy, including TS3 may be more convenient.

A trained PCA model can be used in several ways: (i) Tract states vi can be sampled within

the full vocal tract (VT) parameter space, encoded into the PC space and then decoded again

(VT!PC). (ii) PC states p∗
j can be sampled within the PC space directly and then decoded into

the VT space (PC→VT). While the implementation of the first method is straight forward, one

needs to define the boundaries of the sampling range in case of the second method since the

PC space is unbounded. Useful boundaries may be obtained in the following way: A large set

of vocal tract states is sampled uniformly from the respective parameter ranges. The set gets

transformed into a PC space. The individual PC values will be Gaussian distributed in every

dimension. Boundaries for uniform sampling methods may then be defined as [µµµPC±nσ ·σσσPC],
see Figure 1 (left plot). The parameter nσ has a strong influence on resulting vocal tract state

distributions sampled from the PC space (Figure 1, middle plot) and can be tuned as desired

(Figure 1, right plot).

2.3 Uniform Vocal Tract Exploration

A set of 105 random open vocal tract states was drawn from a uniform distribution within the

limits of the allowed range (see Table 1) of the respective articulatory parameters. Thereby, open

means that the minimum cross-sectional area (see left plot in Figure 2) of the corresponding tube

is TMin ≥ 0.3cm2. Such states produce vowels when excited with a modal voice. The states

were subsequently encoded and decoded using a PCA model, which was trained on 15 of the

total 19 dimensions of the predefined shapes, excluding the parameters VO, TRX, TRY and

TS3 for the reasons explained earlier. The number of PC dimensions was chosen to be 7, which

explain approximately 95% of the observed variance in the training data.
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Figure 1 – Left: States sampled uniformly from the VT space, will be normal distributed in the PC

space (solid line). When sampling from the PC space, boundaries of the uniform distributions may be

set to [µµµPC ±nσ ·σσσPC]. Here, the distributions for nσ = 1, . . . ,3 are shown for a single dimension PC1

as a dashed, dotted and dash-dotted line, respectively. Middle: Amount of open (TMin ≥ 0.3cm2), tight

(0.3cm2 > TMin > 0.001cm2) and closed states (TMin ≤ 0.001cm2) as a function of the sampling hyper

parameter nσ . Right: Normalized area of histogram entries that lie within the convex hull formed by

predefined VTL vowels in fR1- fR2 space, visualized as a function of nσ . A scaled skew normal fit is

shown as a solid line.

Additionally, 105 random open tract states were drawn from a uniform distribution within in

the PC space using the same PCA model. The limits of the uniform distributions were deter-

mined by generating two dimensional fR1- fR2 distributions. Thereby, the first and second tube

resonances fR1 and fR2 were derived from the respective volume-velocity transfer functions

(see right plot in Figure 2). These resonances are closely related to the first two formants of

the vowels that would be produced if the corresponding vocal tract states were excited. The

fR1- fR2 distributions were generated ten times as histograms (100 bins in each dimension), for

each nσ ∈ {1,1.1,1.2, . . . ,3}. The area covered by bins with more than one entry that lie within

the convex hull formed by the fR1- fR2 data of the predefined VTL vowel shapes (see Figure 4)

was calculated and divided by the total area of the convex hull. The resulting normalized area

is visualized in Figure 1 (right plot) as a function of nσ . The parameter nσ was chosen so that it

maximizes the normalized area. The optimal value was found to be nσ = 1.5 in this case.1

In both cases of the PCA method application, the excluded parameters VO, TRX, TRY were set

to their default values and TS3 is set to a random value sampled from the uniform distribution

in the TS3 parameter range.

The three resulting vocal tract state distributions were compared in terms of their fR1- fR2 tube

resonance distributions.

2.4 Simulation of Goal-directed Babbling

In order to test the general effectiveness of the PCA approach, a simple simulation of goal-

directed babbling was performed. Thereby, an acoustic reference matrix, which was an (80×
nF) dimensional log-mel scaled spectrogram (whereby nF denotes the number of spectrogram

time frames) of a reference utterance was to be approximated by a vocal learning agent follow-

ing a specific policy. By using the VTL speaker as the reference voice, both the timing of the

speech signals and the (potential) vocal tract length differences are under control. The spectral

weighting issue is solved by only optimizing a single articulatory target at once. Hence, the

high number of dimensions remains the only important variable that influences the success of

1It is important to note that the optimal value for nσ needs to be re-calculated for each new configuration of a

PCA model, and each sampling method, e.g. Gaussian distributed sampling needs a different value than uniformly

distributed sampling.
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Figure 2 – Vocal tract state related functions calculated for the predefined VTL shape /a/. Left: Cross-

sectional area of the tube as a function of the tube length. Right: The magnitude and phase spectra of

the volume-velocity transfer function are visualized in the top and bottom plots, respectively.

the acoustic-to-articulatory-inversion.

2.4.1 Vowel Learning
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Figure 3 – Sketch of the CGRS algorithm in a sim-

plified two dimensional search space. Exploration

noise is indicated by blue density distributions.

In case of vowel imitations the goal state was

formed by a single articulatory vector. The vowels

/a, e, i, o, u, ø, y, E, I, O, U, œ, Y, 5/ were generated

with VTL and used as references. The acoustic

references, as well as the imitations were synthe-

sized using a modal voice glottis state. Synthetic

audio samples had a duration of 400ms.

A constrained greedy random search (CGRS)

strategy was used as the vocal learning policy.

The algorithm is visualized in Figure 3. Starting

from a search space position vi (whereby the ini-

tial position v0 is the predefined /@/ state in this

case), a number of nD = 100 potential states is

sampled around vi using normal distributed noise

with dimension-specific standard deviations. The

noise vector is denoted as δ , whereby each noise

dimension corresponds to 10% of the respective

vocal tract parameter range. The nD roll outs are

constrained to be open vocal tract states. Subse-

quently, the spectral acoustic loss (LS) values be-

tween a reference and the nD roll outs is calcu-

lated using the mean squared Euclidean distance

between the reference and imitation log-mel spectra. If the respective minimal loss is smaller

than the loss corresponding to the current state vi, the state with minimal loss becomes the next

search space state vi+1. Else, if no new minimum is found, the search space radius is iteratively

enlarged and nD new states are sampled and evaluated. These procedures are repeated until a

maximum number of iterations (in this case 15) is reached or an early stopping criterion (if the

search radius is enlarged five times in a row) is reached.

Two vowel imitation experiments were performed. For the first one, ten CGRS runs with dif-

ferent random seeds, were conducted as described above for each reference vowel. The second

experiment was the same, except that the states were transformed into the PC space and re-

transformed into the VT space during the constrain step. For this purpose, another PCA model
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CGRS Iterations L̂S L̂A

VT VT ! PC VT VT ! PC VT VT ! PC

Vowels 5 5 0.105 0.089! 2.186 1.294!

Consonants

/b/ 3 3 0.008 0.013 1.3 1.62

/d/ 3 3 0.012 0.009! 1.385 0.595!

/g/ 4 3.5 0.015 0.01! 1.181 0.739!

Table 2 – Results of the goal-babbling experiments. The table shows the median values obtained for

CGRS iterations, the normalized acoustic loss L̂S and the normalized articulatory loss L̂A. Better values

are indicated by bold numbers. A star indicates a significant difference between the values obtained with

the VT and VT!PC methods. Thereby significant means p < 0.05 based on Mood’s median test.

PCA model (middle plot), the resulting distribution has a higher similarity to the area formed

by the predefined VTL vowels. Maximum similarity can be achieved by sampling in the PC

space directly (right plot) using an optimized value for nσ (here nσ = 1.5).
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Figure 5 – Results of the goal-babbling experiments. The normalized acoustic and articulatory loss

distributions are visualized in the top and bottom plots, respectively. A dashed line indicates the L̂A =
1.0 level in the bottom plots. Left: Summarized results for the vowels /a, e, i, o, u, ø, y, E, I, O, U, œ, Y,

5/ . Right: Results for the consonants, separated into /b, d, g/.

Goal-directed Babbling

Figure 5 shows the distributions of the normalized acoustic and articulatory loss values in case

of the vowels (left plot) and the consonants (right plot), which are separated into the differ-

ent consonant classes. Normalization means in this case that the final values of the finished

optimization are divided by the respective initial values. For the vowels, both the acoustic

and articulatory losses are concentrated around lower values in the VT!PC method com-

pared to VT-only method. The distributions are significantly different based on two-sided Kol-

mogorov–Smirnov tests (p = 0.01 and p = 2 ·10−6 in case of L̂S and L̂A, respectively).

No significant differences were observed between distributions of the consonant /b/. For the

consonants /d, g/, the VT and VT!PC distributions are significantly different (L̂S: p = 0.02,

L̂A: p = 5 ·10−6 and L̂S: p = 2 ·10−4, L̂A: p = 1 ·10−3 in case of /d, g/, respectively).

Table 2 shows the median values for L̂S and L̂A, as well as the median number of CGRS it-

erations that were performed until the early stopping criterion was reached. No significant

differences were found among the CGRS iteration distributions.
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4 Discussion

This work shows that the use of PCA in vocal learning simulations can make it easier to obtain

high quality vowels and consonants compared to the case without. The study also shows that

acoustic optimization does not imply an optimization of the articulatory states (at least not

across all dimensions) in case of the VT method, since the normalized articulatory loss at the

end of optimization is mostly above 1.0 (i.e., greater than at the beginning) for both vowels

and consonants. It is likely that acoustically important dimensions [8] have been optimized, but

unimportant dimensions may vary greatly between the articulatory goal states and imitations.

This implies that a complete acoustic-to-articulatory inversion based on an acoustic loss only

is difficult and ambiguous even in this simplest case of copy synthesis. However, it could

be shown that in many of the acoustic optimizations with the PCA method, the articulatory

states were also optimized. For vowels, about half of the L̂A distribution is below 1.0, for the

consonants /d/ and /g/ it is about three quarters. Only for the consonant /b/ there seems to

be no advantage over the VT-only method. This may be due to the fact that this consonant is

acoustically and articulatory more ambiguous, since it can be achieved by simply closing and

opening the mouth, while the other two consonants require precise points of articulation.

In future studies, the performance gain through PCA should be validated in a more elaborated

vocal learning simulation using natural speech utterances as references.
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