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Abstract: The articubench benchmark is a collection of tasks, datasets and scores
or metrics in the articulatory speech synthesis domain. The benchmark allows the
comparison of different control models for the VocalTractLab speech synthesizer.
Articubench is work in progress with the newest results and comparisons of models
available at https://github.com/quantling/articubench. This publication
states the motivation, goals and rationale behind articubench. Tasks, datasets and
scores are presented.

1 Motivation

A well-defined task on a freely available common dataset can boost the development of models
solving this task and summarising the dataset in a meaningful way. In the domain of image
recognition the MNIST dataset [1] constituted an early baseline, which was later massively
upscaled by the ImageNet dataset [2]. To the best of our knowledge, the domain of articulatory
speech synthesis lacks such an easily accessible dataset and task.

The domain of articulatory speech synthesis is at least threefold with three aspects of evalu-
ation. The first aspect is to perform the articulation in a human-like low effort way. The second
aspect is to convey the meaning or semantics of the articulated utterance, which boils down
to a classification problem and associated task. The third aspect is the acoustic similarity and
quality of the articulated utterance.

These three aspects will be addressed with the python package articubench, with which
we take a first step to fill this gap of a missing freely available common dataset. Together
with specific setup instructions, the performance of a new articulatory speech synthesis control
model can be compared to already existing ones. The package combines and publishes data and
analysis scripts from earlier publications [3], [4] and adds data from the Mozilla Common Voice
project [5], from the KEC [6] and from the GECO corpus (small portion of the transcription
only; [7]). The benchmark uses the VocalTractLab (VTL) speech synthesizer as its vocal tract
model [8].

The benchmark calculates a total score based on subscores for three different groups of
evaluation scores. The idea is to give a reproducible, comparable measure to improve the de-
velopment of control models by revealing advantages and disadvantages in the proposed tasks.

In the following sections the three different tasks (copy-synthesis, semantic-acoustic, semantic-
only) and the three groups of scores (articulatory, acoustics, semantics) with their associated
subscores are defined and explained. This is followed by a short presentation of the used
datasets. In the end, the limitations of this benchmark and future plans are discussed.

The newest scores and comparisons of control models will be published alongside the pack-
age1 and on the Python package index2. Furthermore, the code used in this benchmark can be a

1https://github.com/quantling/articubench
2https://pypi.org
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good starting point for scientists, who want to compare electromagnetic articulography (EMA)
or mid sagittal tongue contour ultra sound recordings with the virtual tongue movements of the
VTL synthesis.

1.1 VocalTractLab (VTL)

The articubench benchmark uses the VocalTractLab (VTL) speech synthesiser api with the JD3
speaker in version 2.5.1quantling. In this configuration, the VTL synthesizer takes a sequence
of 30 control parameters (19 control parameters for the vocal tract shape and 11 control pa-
rameters for the glottis configuration) defined every 110 audio samples (2.5 ms) as input and
emits a 44,100 Hz mono audio signal. The quality of the provided control parameter sequence
(cp-trajectory) determines the quality of the resulting audio signal and is, therefore, the basic
building block of the articubench score. In order to compete in the benchmark each control
model is expected to output a valid cp-trajectory. Note that the VTL comes with a rich frontend
to orchestrate gestural scores and visualize results. This frontend is not used here.

2 Tasks

In the field of articulatory speech synthesis and articulatory phonology, one of the main tasks is
to record, systematize and understand the human speaking process. Particular focus is placed
on the use of the articulators, which show a wide variability across different speakers but also
within a single speaker. Still human articulation produces intelligible speech with seemingly
low effort. As a first step to capture this huge challenge, which needs to be clarified and specified
furthermore, we define and implement three word-level tasks.

All tasks are linked to but should not be confused with the evaluation scores and metrics
used in the benchmark. The task itself defines the given inputs and the expected outputs, which
is different to the quality measures described in the scores section.

2.1 Acoustic-only (Copy-Synthesis) Task

In the acoustic-only or copy-synthesis task only a target (human) audio recording with no out-
side information on the intended meaning is given. The control model is supposed to return
cp-trajectories of the same duration as the target recording. Meaningful and important scores
are those from the articulatory and acoustic domain, whereas the scores from the semantic do-
main come second.

2.2 Semantic-only Task

The semantic-only task starts with a target semantic embedding vector and seeks to find cp-
trajectories that produce a synthesis, which the embedder embeds closely to the target semantic
embedding vector. For this task the acoustic metrics receive less attention as there is no objective
acoustic attached to each semantic embedding (a single to many problem). The metrics of the
articulator movements and the semantics, however, are still valid.

2.3 Semantic-Acoustic Task

In the semantic-acoustic task, both a (human) recording of a single word and a target semantic
embedding vector are given. The goal of the control model is to find a set of cp-trajectories that
jointly match the recording and the semantic embedding vector as close as possible. All metrics
and associated subscores are equally relevant to this task.
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3 Scores

Where the tasks define what the control model is required to do, the scores define different
metrics on how the performance of the control model is evaluated. Thereby the scores and
subscores are defined in a way that a higher score means a better control model. Each subscore
usually lies between 0 and 100.

In the domain of articulatory speech synthesis we distinguish three important groups of
scores. The first group of subscores measures the quality of the articulatory movements. As
there is high variability in human articulatory movements there is no single gold standard
movement of the articulators given a specific target acoustics. Nevertheless, the articulators
of the VTL should follow some distributional properties of the human articulators and should
be comparable to sensor measurements of the human tongue. The articubench benchmarks
evaluates the velocity and jerk distribution of the cp-trajectories. Furthermore, it compares the
virtual tongue movement to electromagnetic articulography (EMA) data at the tongue tip and
the tongue body and compares the virtual tongue height to the human tongue height using ultra
sound measurement of the mid sagittal plane. The second group of subscores belongs to the
semantic domain. This is implemented by looking at the closeness to a target semantic vector
embedding and the classification rank in a single word classification setup. The third group of
subscores belongs to the acoustic domain. With these subscores the similarity between synthe-
sis and target audio recording are evaluated by comparing a loudness envelope and two log-mel
spectrograms. Subscores for the f0 and formant transitions should be added later on. Each
group score as well as the total score are calculated as the sum of all subscores.

To calculate the scores of a control model, the predicted cp-trajectories serve as input to
the VTL. After deriving the corresponding audio and virtual tongue movements, scores are
calculated in the following way. First an error on each token is calculated and averaged over all
tokens in the dataset. In a next step the average error is normalised by the average error of the
baseline model in corresponding subscore. Afterwards, the resulting normalised average error is
subtracted from 1 and multiplied by 100. This ensures that having no error results in a subscore
of 100 and an error of the size of the baseline model results in a subscore of 0. In the equations
this normalization is denoted by the text baseline model in the denominator. Most errors are
calculated by computing the root mean squared error (RMSE) between resulting synthesis and
the target.

The the total score Stotal and the three group scores Sarticulator, Sacoustic, Ssemantic are defined
the following way:

Stotal = Sarticulatory +Ssemantic +Sacoustic

Sarticulatory = Stongue_height +Sema +Svel_jerk

Ssemantic = Ssem_dist +Ssem_rank

Sacoustic = Sloudness +Sspectrogram

3.1 Articulatory Scores

3.1.1 Tongue height

The highest point of the tongue can by easily determined by a mid sagittal tongue contours
measurement using ultra sound. As the highest point of the tongue is defined for every time
point, it is possible to apply a point-wise measure before averaging over all time points and
tokens. In order to extract tongue information from VTL, we export the mid sagittal plane as an
svg image and rotate and shift the svg image to match a standard orientation of an ultra sound
image. We extract the highest point of the tongue line in the svg. Scores are normalised to the
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baseline model.

Stongue_height = 100 ·

&

1−
meantoken(RMSE(heightsynthesis,heightultrasound))

baseline model

$

3.1.2 Virtual EMA Points

Electromagnetic articulography (EMA) allows to track sensors glued on the tongue or other
articulators of the human speech organ during speech production. Sensor can be tracked over
time together with their prepared and "registered" location. This allows for a direct comparison
to virtual EMA sensors of the VTL. In articubench we focus on the tongue tip and tongue
middle sensor with an RMSE along the bottom-top z and back-forth x movement. Scores are
normalised to the baseline model.

Sema = 100 ·

&

4−
meantoken(RMSETT,x +RMSETT,z +RMSETM,x +RMSETM,z)

baseline model

$

RMSETT,x = RMSE(tongue_tipsynthesis,x, tongue_tipema,x)

The remaining values RMSETT,y, RMSETM,x, and RMSETM,y are calculated respectively.

3.1.3 Velocity and Jerk of Control Parameters

Due to the different size of the vocal cavity and the difficulty to define a standardized origin and
orientation for the articulator movements, we focus on some distributional movement patterns
of the vocal tract and glottis cp-trajectories in terms of confidence for human-like statistical
properties. This means especially that the cp-trajectories are smooth, i. e. do not have any
jumps nor sharp corners, and don’t have extreme velocities (changes in position) nor extreme
jerks (changes in acceleration or applied force). In contrast to the other scores, velocities and
jerks are normalised by the cp-trajectories of the resynthesised GECO corpus as the baseline
model has a jerk and velocity of zero.

Svel_jerk = 100 ·

&

2−
meantoken(max(velocitysynthesis))

max(velocityGECO)
−

meantoken(max(jerksynthesis))

max(jerkGECO)

$

3.2 Semantic Scores

3.2.1 Semantic Embedding

The first score for the semantic is the distance between the semantic embedding vector of the
synthesis compared to the target semantic embedding vector normalised to the distance between
the baseline model to the target semantic embedding vector.

Ssem_dist = 100 ·

&

1−
meantoken(RMSE(semantic_vectorsynthesis,semantic_vectortarget))

baseline model

$

3.2.2 Classification Rank

The rank of a target semantic vector is determined by calculating the correlation of the em-
bedded vector to 4311 reference semantic vectors including the target and ranking them from
highest to lowest. The rank of the target semantic vector is used to calculate a score:

Ssem_rank = 100 ·

&

1−
meantoken(ranktarget −1))

4311

$
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3.3 Acoustic Scores

3.3.1 Loudness over Time

One of the broadest measures to check, if the acoustics of the synthesis roughly matches the
target recording, is to compare the loudness envelope. To do so, we calculate the loudness
every 220 samples over a 1024 sample window by summing all log-mel spectrogram entries
(see below) for each time slice:

Sloudness = 100 ·

&

1−
meantoken(RMSE(loudnesssynthesis, loudnessrecording))

baseline model

$

3.3.2 Log-Mel Spectrogram

The log-mel spectrogram roughly approximates the signal decomposition performed by the
human ear as it maps the frequency to pitch and the energy or magnitude to loudness. We use
a Mel spectrogram with 60 banks in the frequency range from 10 to 12000 Hz, a time shift of
110 samples (2.5 ms) and an aggregation window for the Fourier transform of 1024 samples
(23.2 ms). From the magnitude values of the Mel spectrogram the logarithm is computed to
map it from a physical energy measure to a perceptual loudness measure on a db-scale. The
resulting loudness values are finally mapped to the [0, inf) interval where 1 is a loud tone and 0
corresponds to silence.

Sspectrogram = 100 ·

&

1−
meantoken(RMSE(spectrogramsynthesis,spectrogramrecording))

baseline model

$

4 Datasets

The benchmark comes in three sizes: a tiny one with one to two tokens per dataset; a small one
with around 30 tokens per dataset and a normal one with around 1000 tokens per dataset or all
available tokens in the dataset. With the three different sizes we account for the need of testing
if a control model performs at all (tiny), brings comparable results (small) and is better or worse
along the language statistics in a statistically robust way (normal).

The articubench focusses on the German language and therefore only German datasets are
used so far.

4.1 KEC

From the KEC [6] we select 1779 /ja/ and /halt/ word tokens spliced out of a conversation
between two of 79 acquainted, native speakers of Southern German. Each conversation lasted
for one hour and was hold in separate booths. Beside audio, EMA data was recorded from
which we use the tongue tip and tongue body sensors. Manual annotation at the word level is
provided while automatic annotation at the segment level as well as an automatic morphological
tagging is added.

4.2 Mozilla Common Voice

Mozilla Common Voice [5] recordings are mostly read out speech from a crowd source project,
which are freely available. For articubench we use a small portion of the German part of the
Common Voice corpus, which we aligned with the Montreal Forced Aligner (MFA) [9] to cut
out single word tokens. The dataset is less natural compared to the KEC and GECO but more
natural than professional speech from professional speakers in radio broadcasts or TV shows.
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4.3 GECO

The GECO [10] contains 46 dialogues of approx. 25 minutes length between previously unac-
quainted female subjects. Similar to the KEC, conversational speech comes prealigned on the
word and phone segment level. Articubench uses the phone segment transcriptions files of 1000
words.

4.4 babibabubaba

In the babibabubaba dataset [4] ultra sound recordings of the mid sagittal plane of the tongue
were measured for the artificial non-words /babi/, /babu/, /baba/ to create human data on coar-
ticulation effects of formant transition in the /a/ sound.

5 Control Models

A control model competing in articubench benchmark needs to implement an interface receiving
either an audio recording, a semantic embedding vector and a duration, or all three. The output
must consists of a cp-trajectory of the requested duration. Furthermore, if implemented as a
machine learning model, it needs to state the number of trainable parameter and its energy
consumption for training. Table 1 shows an overview of different models present in articubench.

5.1 Baseline Model (Schwa-Model)

The baseline model always returns the neutral gesture of the JD3 speaker of the VTL. With the
neutral gesture the VTL produces a constant Schwa-sound.

5.2 Segment-based Model

The segment based synthesis uses phone segments and their corresponding duration to blend
gestural scores of the JD3 speaker together overtime. The blended gestures result in smooth
cp-trajectories. For the acoustic-only task the given acoustics has to be labeled with a sampa-
phone transcription. After aligning the phone segment using the MFA, [9], cp-trajectories can
be generated.For the semantic-only task, sampa transcription for the target word need to be
looked up in a data base and standard phone durations are scaled to the desired total length of the
word. In the semantic-acoustic task, the target semantic embedding vector is used for the sampa
lookup, while durations of the phone segments are derived from an alignment [9].Although the
segment based model has no trainable parameters and is fast to execute, it relies on a substantial
amount of handcrafting, knowledge and fine tuning.

5.3 Inverse Model / Cp-GAN

The inverse model is a direct mapping of a log-mel spectrogram to cp-trajectories. In the PAULE
model [11] it is used as one option to initialize the cp-trajectories. However, it can be used
stand-alone for the copy-synthesis task as well. As a second option of initialization, the PAUL
model introduces a Cp-GAN, generating cp-trajectories from a semantic vector. Again the
initialisation can be evaluated as a stand-alone model.
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5.4 Predictive Articulatory speech synthesis Utilising Lexical Embeddings (PAULE)

The complete PAULE control model3 [11] is the heaviest of the control models showcased here.
It uses the inverse model or the Cp-GAN as initialisation before it iteratively plans even better
cp-trajectories, which is computational intense.

Table 1 – Comparing the PAULE, inverse, segment-based and baseline control models along different
model properties. The memory demand includes the python binaries (200 MB). The segment model
needs an embedder and the MFA [9] in its pipeline, for which the data is given in parenthesis.

Property PAULE Inverse Seg-Model* Baseline-Model

Trainable parameters [million] 15.6 2.6 0 (6.6 + MFA) 0

Execution time [seconds] 200 0.2 0.5 (0.3 + MFA) < 0.0001

Memory demand [MB] 5600 5000 2 (5100 + MFA) 200

Energy used for Training [kWh] 393 1.9 0.0 (7.6 + MFA) 0.0

6 Limitations, Next Steps, & Conclusion

The articubench benchmark is limited to the German language, neither English nor any tonal
language are used so far. It focuses on evaluating single spliced-out words from read-out or
conversational speech instead of whole phrases. Comparing scores on the benchmark for differ-
ent models might overlook important theoretical and practical differences between the models.
Intelligibility of the speech cannot be easily compared, as there is no easy automated way to
do this so far. The benchmark includes a pretrained embedder model that maps log-mel spec-
trograms to semantic embeddings. Although needed to be included with fixed weights to make
the benchmark deterministic and replicable, this embedder model is only one possible mapping
between an audio signal and semantic embedding vectors and therefore has no ground truth
justification. Furthermore, some of the scores that approximating human judgements are a lot
less precise and at the same time more sensitive to noise compared to the human perception of
speech. However, as a benchmark is always somehow an arbitrary choice of comparison, artic-
ubench can give a quality overview of control models with a coarse grained insight on strengths
and weaknesses. In order to evaluate and understand small differences in control model quality
a human judgement is still necessary.

Still missing are two important acoustic scores: first, the metric of formant transitions in
the /babi/, /babu/, /baba/ utterances and second, matching changes in the fundamental frequency
(f0), which might be an especially interesting score for tonal languages. Both of these require a
robust and automatic way of extracting these measures in python.

Furthermore, as most human conversations use more than single words and articulatory
patterns can stretch longer periods than single words, it is favorable to complement the artic-
ubench benchmark with whole phrase dataset and tasks. Plans include to add an English and
Mandarin speaking dataset. On the control model side, it would be nice to have a DIVA [12]
like control model for VTL as well as the generative optimisation approach developed by Gao
et al. [13].

In conclusion, we propose an articulatory benchmark, which compares control models
for the VocalTractLab speech synthesiser along the articulatory, semantically, and acousti-
cally domain. Suggestions on how to improve articubench are highly appreciated and will
be incorporated in future version of articubench published as free and open source software at
https://github.com/quantling/articubench.

3https://github.com/quantling/paule
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