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Abstract: We present a method to both resynthesize and produce speech with the
articulatory speech sythesizer VocalTractLab. We extend the recurrent gradient-
based motor inference model for speech resynthesis with two generative adversarial
networks (GANs). As a result, we are able to synthesize articulatory speech starting
from the semantic level with distributed word embedding vector representations
from fastText.

1 Introduction

Articulatory speech synthesis refers to the challenge to generate speech via a physical simulator
of the vocal tract, including the pressure changes and resonances in the vocal and nasal cavities
as well as the properties of the larynx. The parameters of the simulator control the position
of individual articulators, such as jaw, lips, or tongue aiming to simulate how humans use
their speech organs to produce speech. The main challenge in the process of articulatory speech
synthesis is to find a physically plausible set of control parameter trajectories (cp-trajectories) to
produce intelligible speech. This approach stands in contrast to approaches that generate speech
by averaging similarly sounding speech segments [1] or by learning autoregressive, generative
models from natural language data [2].

To generate a target acoustic via a cp-trajectory fully or semi-automatically, typically, prior
assumptions about phonemic and syllable structures including feedback control are made. The
neuro-inspired DIVA model [3], for example, learns to generate cp-trajectories via auditory and
somatosensory feedback loops. It is able to resynthesize or copy-synthesize target wave files.
DIVA and related models, however, do not take semantic information, such as word meanings,
into account. From a psychological perspective, though, meaning is considered the beginning
and primary purpose of language production and processing [4]. Accordingly, we explore in
which way word meanings may improve speech synthesis [5].

One of the most promising approaches for capturing semantic information of words (or
other linguistic constructs) is the usage of distributional semantics models. These models de-
rive semantic information from distributional properties found in large text corpi, such that
word meanings are expressed in the form of points in an embedding space—so-called word em-
beddings or semantic vectors. A suitably-structured embedding space allows a distance-based
computation of word meaning dissimilarities and associates linear shifts with specific semantic
changes in meaning. Because meaning is thus encoded by a fixed-size vector, it is not necessary
to deal with an infinite set of different symbolic meanings. Furthermore, in contrast to sym-
bolic approaches, word embeddings derived from real language data can be directly connected
to experience and human learning.

At ESSV 2021 [5] we introduced a first model that is able to infer cp-trajectories from
semantic embeddings. We extended the recurrent gradient-based motor inference model for
speech resynthesis [6] with an embedding model that is trained to learn a mapping from an
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acoustic representation to a semantic word embedding. The resulting model enabled semantic
discrimination, instead of mimicking acoustics, by adding an additional loss term capturing the
discrepancy between the predicted and target semantic embedding.

In this contribution, we aim at starting the language production process fully on the seman-
tic level by extending our previous model [6, 5] to the Predictive Articulatory speech synthesis
Utilizing Lexical Embeddings (PAULE) model1. PAULE follows a behavior-based approach
relying on prediction errors of a forward model and an internal planning process, which uses
gradient information to infer cp-trajectories. Based on temporal gradient-based inference [7, 8],
we introduce a sequence-to-sequence and a fixed-vector-to-sequence approach to infer an ap-
propriate cp-trajectory. Besides our usage of long short-term memory recurrent artificial neural
networks (LSTMs) [9], we use two generative adversarial networks (GAN) for building an en-
semble of models that is capable of a) resynthesizing given audio and b) generating speech from
semantic embedding vectors. Given a word embedding, the GANs thus allow us to sample new
motoric and acoustic word representations in the form of cp-trajectories (Cp-GAN) and log-mel
spectrograms (Mel-GAN), thus initiating the speech generation process from the semantic level.

All models used within our framework are completely agnostic to any motor gestures or
phonemic transcriptions. Moreover, they are fully differentiable. Feedback from errors between
target and produced speech on the acoustic and semantic level is, in contrast to the DIVA model,
not directly learned but provided by backpropagated gradient information. The whole frame-
work is hard-constrained only by the geometrical and physical constraints of the articulatory
synthesis model, by the chosen semantic embedding and the log-mel spectrogram encoding,
and by the temporal resolution used in the control parameters and in the acoustic domains. Soft
constraints on the flexibility of articulators, namely jerk and velocity constraints, are applied
during planning.

2 Methods

As depicted in Figure 6 the framework involves five different models or, more specifically,
two generative models (shaded in green) and three predictive models (shaded in red), as well
as the VocalTractLab (henceforth, VTL) speech synthesizer (shaded in yellow). Blue shaded
boxes indicate data objects, namely, 1) the cp-trajectories, which govern the vocal tract sim-
ulator, 2) the log-mel spectrograms, which encode the acoustics, and 3) the semantic vector
space embeddings, which operationalize the meaning of the utterances. The three predictive
models are LSTM-based and include 1) an inverse model, which provides initial cp-trajectories
predicted from a log-mel spectrogram, 2) a forward model, which predicts a VTL synthesized
log-mel spectrogram from a set of cp-trajectories, and 3) an embedding model, which maps
a variable-sized acoustic representation in form of a log-mel spectrogram onto a fixed length
semantic vector. Because the embedding and forward model are differentiable, the loss in se-
mantic and/or acoustic space can be backpropagated towards the encoding of the cp-trajectories,
striving to infer the best error-minimizing trajectory. The inverse model, on the other hand, is
used to initialize the cp-trajectories.

Besides the predictive models, our framework incorporates two generative models shaded
in green. More precisely, we used two conditional Wasserstein GANs trained with Gradient
Penalty. The first model, henceforth Cp-GAN, was trained to find a mapping conditioned on
a semantic vector indicating a certain word meaning from a random noise vector z to a set of
cp-trajectories. The second one, henceforth Mel-GAN, was trained similarly to find a mapping
to a log-mel spectrogram, again with the log-mel spectrograms from VTL synthesized audios
as physical ground truth. Details of the models are provided below.

1https://github.com/quantling/paule
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2.1 Scenarios and model evaluations

To explore the inference of motor commands for speech resynthesis, we distinguish three start-
ing scenarios with three different planning objectives. In the first starting scenario, the mimick-

ing condition, we provide a real-world recording as the target acoustic. Initial cp-trajectories
are predicted by the inverse model. In the second scenario, called supervised generation, we
also provide the real-world target acoustic but generate an initial set of cp-trajectories using the
Cp-GAN. In the third scenario, called full generation, we provide a semantic target and use both
GANs: the Cp-GAN to initialize the cp-trajectories; the Mel-GAN to generate a target acous-
tic. After initialisation, the inference process unfolds similarly in all conditions. Starting from
the initial cp-trajectories as input, we use the forward model to predict an imagined acoustic
representation. The predicted acoustic representation is mapped onto the semantic space by the
embedder, imagining the matching semantic embedding. Depending on the chosen objective
(see Section 2.5), we calculate an error between target and predictions. Since all predictive
models are fully differentiable we can derive the gradients given this discrepancy and use them
to iteratively improve the initial cp-trajectories. This process is called planning. We further
add some soft constraints to the motor effort of articulators, namely jerk and velocity loss. We
repeat the planning process until we reach a final set of optimized cp-trajectories, which are
then executed by the VTL producing the final resulting acoustics. Finally, these acoustics are
mapped onto the semantic space by the embedder, predicting the final semantic representation.

By using the gradients, we are able to learn corrections to some cp-trajectories, creating a
new sample of motor-acoustics relations for the VTL. This new sample can be incorporated in
further training of the forward model in order to keep it in sync with the VTL synthesizer. De-
pending on the desired performance, planning and additional learning steps can be interleaved
to improve the planned cp-trajectories. In our experiments we plan each cp-trajectory for 120 it-
erations, while continuing learning every 24 iterations. This gives a good compromise between
model accuracy and computation time.

To test and quantify the performance of the whole framework, we compare the final syn-
thesized acoustics with real-world recordings. The comparisons include calculating the root
mean square error (RMSE) between produced and target log-mel spectrograms as a measure of
acoustic similarity and the RMSE between embedded semantic vectors as a measure of intelli-
gibility. As a control condition, we include a comparison with a segment-based approach (see
Section 2.2) [10].

2.2 VocalTractLab (VTL)

For the articulatory speech synthesis we used the VocalTractLab synthesiser (VTL) version
2.3 developed by Peter Birkholz [11] as described in [5]. VTL takes a sequence of 30 con-
trol parameters (cps) per time step as input and emits a 44,100 Hz mono audio signal. Every
parameter is defined every 110 audio samples (2.5 ms) with transitions interpolated between.
Furthermore, we use the VTL API method to derive cp-trajectories from phone sequences and
predefined gestural scores (segment-based approach; [10]).

2.3 Forward, Inverse, & Embedding Model

The predictive forward model shortcuts the VTL simulator. It learns to predict a log-mel spec-
trogram from a set of cp-trajectories approximating the acoustic representation resulting from
the forward synthesis by the VTL. It plays the main role during the planning process since its
gradients are used as a local approximation of the gradients of the VTL. Besides being differ-
entiable the forward models possesses an execution time advantage compared to the vocal tract
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lab. A single execution of the forward model plus the backpropagation of the error is around 100
times faster than an actual simulation with the VTL simulator. The model is implemented as a
recurrent sequence to sequence LSTM model. The input cp-trajectories serve as input for a 720
cell one-layer LSTM-network. The output of the LSTM-layer is linearly mapped to 60 dimen-
sions. Since we calculated log-mel spectrograms with a sampling resolution of 5 ms in contrast
to cps being sampled every 2.5 ms the sequence length is halved with an average pooling layer.

The inverse model is only used in the mimicking scenario. It is trained to learn a mapping
from a log-mel spectrogram to a cp-trajectory. Since this mapping is a one-to-many problem
(many cp-trajectories resulting in very similar or identical acoustic manifestations), the inverse
model is only used to create a first guess of suitable cp-trajectories, thus initializing the planning
process ideally from an eligible trajectory. The model is implemented as a recurrent sequence to
sequence LSTM model with 720 hidden units and an additional upstream convolutional block as
described in [5] . The output of the last layer is linearly mapped to 30 dimensions, representing
the 30 control parameters of the VTL. We double the sequence length by linearly interpolat-
ing between time steps before smoothing trajectories over time by a set of one dimensional
convolutions.

Both models are trained independently using the ADAM optimizer [12] with default param-
eters and an initial learning rate of 0.001 which was dropped to 0.0001 after 50 epochs.They
strive to minimize the RMSE loss with a batch size of 8 for 100 epochs. To keep the influence
of padding small, batches are grouped to samples with similar length (same size batching).

The predictive embedding model (embedder) maps an acoustic representation in the form
of a log-mel spectrogram to a 300 dimensional word embedding vector. We calculate dissimilar-
ities between meanings in terms of Euclidean distances between two word embedding vectors.
Although it is debatable whether the embedding space is a valid vector space and Euclidean
distance globally meaningful, the Euclidean distance is the most direct way to determine a loss
signal. We use the minimal Euclidean distance to a target fastText semantic vector to predict
labels for an embedded acoustic. Therefore, the distance in semantic space serves as a kind of
measurement for intelligibility. We built the sequence-to-fixed-vector embedder using a LSTM-
network containing 2 layers with a hidden size of 720. The output is linearly mapped to 300
output units corresponding to the prediction of a word embedding.

We trained the embedder using the RMSE loss and an ADAM optimizer [12] with default
parameters and an initial learning rate of 0.0001 for 200 epochs. We used a batchsize of 8
applying same size batching. During training we used dropout of 0.7 in the last LSTM-layer
forcing the model to predict a target vector with only a subset of hidden units. Additionally,
we trained the model on target vectors with additive noise. For each sample in each batch, we
drew a noise vector from an independent multivariate Gaussian with µ = 0 and σ = 6−5. The
standard deviation σ was derived as one third of the averaged minimal Euclidean distance in
each dimension between all target vectors.

2.4 Cp- and Mel-GAN

The Cp-GAN and Mel-GAN belong to the category of implicit generative models, the so-called
Generative Adverserial Networks (GAN) [13].Each GAN consists of two individual models
trained simultaneously with a technique from game theory, the so called minimax two-player
game. One model is called the generator. It is trained to find a mapping from a predefined latent
space to a data distribution Pz(z) with the same statistics as the training data Pdata. The second
model is called the discriminator or critic. It is trained to distinguish true and generated samples,
which corresponds to minimizing a similarity or maximizing a distance between true and gen-
erated data distributions. The generator tries exactly the opposite by using gradient information
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of the critic. A common choice is to train the critic with the JS-divergence. This however, can
cause the common problem of vanishing gradients. In cases of little to no overlap between real
and generated distribution, the JS-divergence leads to a constant value of log(2) giving no gra-
dient information. That is why Gulrajani et al. [14] introduced the so called Wasserstein GANs
with a critic approximating the Wasserstein distance and leading to a continuous differentiable
value function. Besides the vanishing gradient problem, GANs may suffer from so-called mode
collapse, in which the model generates samples for only one specific class. Mirza and Osindero
[15] could show that providing additional information to both generator and critic can direct the
data generation process and control the modes of the data being generated.

For the Cp-GAN and Mel-GAN we used both improvements. We trained a critic to approx-
imate the Wasserstein distance between true and generated distribution taking variable length-
sequences and a 300 dimensional semantic embedding vector as additional information. For the
generator we sampled a 100 dimensional latent noise vector from a normal distribution, which
was concatenated with a provided semantic embedding vector leading to 400 input dimensions.
We implemented both models as deep convolutional networks with an adapted architecture in-
spired by Kendrick et al. [16]. The generator model takes the 400 dimensional input vector to-
gether with a desired sequence length. The input vector is mapped to 1024 dimensions by a fully
connected layer. The output is reshaped to a two dimensional tensor with an initial sequence
length of four and 256 initially extracted features before fed into five blocks of 1-dimensional
convolutional layers. We ensured that no size editing takes place within these blocks. With
respect to Kendrick et al. [16] and in order to create a sequence equal to the provided input
length resizing is done progressively throughout the network by linearly upsampling the output
between blocks. Arriving at a sequence of exact length we apply a linear layer to map the 256
hidden features to either 30 output dimensions representing the 30 cp-trajectories (Cp-GAN) or
60 output dimensions representing the mel-channel of a log-mel spectrogram (Mel-GAN).

The critic receives a sample either from the generator or from the training data. We also pro-
vide the corresponding 300 dimensional semantic vector. The semantic vector is concatenated
with the input dimensions leading to an input of size length× 330 (Cp-GAN) or length× 360
(Mel-GAN). This input is fed into an initial linear layer with 180 hidden units and is passed on
to five blocks of 1-dimensional convolutional layers. In the last layer we take the average over
all channels, generating an estimate of the Wasserstein distance (Global Average Pooling [17]).

Although W-GAN are stated to have a better training stability [14] their performance is
dependent on their training procedure, especially on their estimate of the Wasserstein distance.
We therefore started the training by giving the critic 5 more update iterations before updating
the generator. Updates were performed using a ADAM optimizer with a learning rate of 0.0001
and parameters β1 = 0.5, β2 = 0.9, ε = 10−8. We used a batch size of 64 applying same size
batching. We calculated the Wasserstein distance by taking the average of differences between
the output of the critic for a batch of true samples and a batch of corresponding generated ones.
For the critic loss we minimized the negative (reformulation of maximizing the the positive)
of the result together with an added gradient penalty loss weighted by λ = 10 [14]. For the
generator loss we minimized the mean of differences between the outputs of the critic for real
and generated trajectories. Over training we monitored the loss and steadily increased the critic
iterations until we reached a computational maximum of 100 critic iterations. We trained the
Cp-GAN for 415 epochs and the Mel-GAN for 400 epochs in total.

Calculations for all models were performed using an Intel Xeon CPU and a Tesla P100-
PCIE-16GB GPU. Training the inverse and forward model finished after around 12h while
training the embedder took around 22h. For both GANs we stopped the training after around
550h. The whole training process consumed approximately 400 kWh.
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2.5 The planning loss

The planning loss is implemented as an additive loss depending on the objective. The RMSE
loss between target and predicted log-mel spectrogram focuses on acoustic patterns only (acous-
tic objective). The RMSE loss between target and predicted semantic vector focuses on se-
mantics (semvec objective). Combining both losses (acoustic semvec objective) enforces a
semantically-stable acoustic imitation. All objectives add a velocity and jerk loss component
per motor trajectory dimension, implementing localization and smoothness constraints that fa-
vor physical plausible trajectories that do not move or move with a constant force.

2.6 Initial training data

The initial training data set consists of a subset of the German Common Voice corpus [18],
which is a crowd-sourcing project consisting of mostly read out sentences recorded and re-
viewed by volunteers in many different languages. After aligning sentences using the Montreal
forced aligner [19] on the segment, syllable and word level, a subset of 26271 word tokens
(training: 21175, validation: 5096) is randomly selected. For this subset, resynthesized ver-
sions are generated with the segment-based approach from VTL. The predictive and inverse
model are trained on the derived cp-trajectories (sequence length between 246 and 924 time
steps) together with resulting log-mel spectrograms (sequence length between 123 and 462
time steps) computed on the resynthesized speech. The log-mel spectrogram for each word is
computed using 60 mel banks within a frequency range from 10 Hz to 12,000 Hz, a window
length of 1024 samples (23.2 ms), and a time delta of 220 samples (5 ms). The mel banks are
calculated on a magnitude spectrum using librosa (version 0.8.0). Wave forms are sampled
at 44,100 Hz. Finally, the log-mel spectrogram is linearly transformed into the 0 to ∞ range
where 0 corresponds to silence and 1 is a loud and clear tone. As silence is not mapped on a
fixed log-mel spectrogram value, the minimum value is subtracted individually in each log-mel
spectrogram. Data per time slice was reduced from 220 samples in the wave form to 60 samples
in the log-mel spectrum. The subsample contains 4311 unique word types. For the embedder
log-mel spectrograms calculated on the real-world recorded audio (sequence length between 7
and 487 time steps) are added to the data set. For the target semantic, vectors consist of 300
dimensional pre-trained word embedding vectors from fastText [20]. These come from a pre-
trained continuous bag of words model (CBOW) trained on the German version of Common
Crawl and Wikipedia. The Cp-GAN and Mel-GAN are trained on a subset of resynthesized
GECO corpus words [21] (29521 word tokens). Besides the training and validation set, a test
set consisted of 225 unseen utterances of 13 words from the Common Voice corpus. Words
were chosen with the aim to create a diverse set of examples capturing different speech aspects.
The word frequency effect is minimized by between 10 and 20 samples per word.2

3 Experiments and Results

The results of our experiments indicate the potential of PAULE. We first analyze the predic-
tive abilities of the forward model and the GANs and then report the inference-based planning
performance of the model.

2Words included ’Beispiel’, ’Freunde’, ’Lehrer’, ’Studium’, ’aber’, ’eigentlich’, ’naemlich’, ’natuerlich’,
’praktisch’, ’schwierig’, ’tatsaechlich’,’trotzdem’, and ’zurueck’.

37



3.1 Performance of Predictive and Generative Models

We trained the forward model and the inverse model for 100 Epochs on the Common Voice
training set. After training, the forward model achieved an average RMSE loss of 1.88×10−2

(first epoch: 4.73× 10−2) between predicted and produced log-mel spectrogram. The inverse
model yielded an average RMSE loss of 4.77× 10−3 (first epoch: 5.93× 10−2) between pre-
dicted and target cp-trajectories, given the segment-based approach as ground truth in the vali-
dation set.

Training the Embedder for 200 Epochs resulted in an average RMSE loss of 1.13× 10−2

(first epoch: 3.31× 10−2) between predicted and target semantic embeddings for the log-mel
spectrograms of the validation set. Using the minimal Euclidean distance, we assigned labels
to the predicted embeddings before calculating the top 1 accuracy. In order to account for the
imbalance of token within types we first calculated the mean accuracy within a word type be-
fore averaging over types. We achieved a type accuracy of 57.6%. Splitting up the results into
recordings and segment-based syntheses revealed a large gap: While the embedder achieves
an accuracy of 33.6% for recordings, it achieves an accuracy of 81.6% for the segment-based
syntheses. This behavior might be due to the large variation in sound quality of the record-
ings, potentially misaligned recordings, and artificial regularities in the segment-based log-mel
spectrograms. For the samples of our small selected test set we achieved a overall accuracy of
80.9% with 62.7% for recordings and 99.1% for segment-based syntheses.

Due to time and energy considerations, we stopped GAN training before reaching an equi-
librium. Therefore, we may have not tapped into the maximum potential of both models.
Nonetheless, the inspected results (examples in Figure 3,4) already indicate that the generated
samples capture most of the relevant properties of their underlying distribution.

3.2 Inference-based planning

Having evaluated all models of our PAULE framework individually, we moved on to the plan-
ning procedure of the 225 word tokens in the test subset. We first fixed our target acoustic and
target semantic. Depending on the condition, this consisted of a log-mel spectrogram either
derived from a real-world recording or generated by our Mel-GAN. For the target semantics
we used the ground truth fastText vector. We started planning from an initial cp-trajectory,
which was either predicted by the inverse model or generated by the Cp-GAN. Given this start-
ing point, we utilized the forward model to predict a log-mel spectrogram and the embedder
to further map the spectrogram onto a semantic vector (black arrows in Figure 6). We cal-
culated the RMSE for predicted and target log-mel spectrograms as well as for the predicted
and target semantic vectors (red dotted lines in Figure 6). Depending on the objective one or
both of the errors were backpropagated along the gradients of the models. Reaching the initial
cp-trajectories, we combined the backpropagated with the velocity and jerk loss.

Figure 1 shows the improvements of the acoustic RMSE loss for the final produced acous-
tics in all conditions. The inference procedure is reducing the loss in all conditions, confirm-
ing that the planning generally works. Both the inverse model and the Cp-GAN are able to
predict/generate reasonable cp-trajectories, which result in acoustically similar or even better
syntheses compared to the segment-based approach. As expected, planning solely on acoustics
achieves best acoustic results followed by the combined loss of acoustics and semantic loss
(acoustic semvec). Optimizing solely on the semantic loss does not yet improve the acoustics.

Figure 2 shows the best resulting semantic RMSE losses for recorded and segment-based
embeddings. This is due to the fact that the embedder is trained on log-mel spectrograms that
were derived from both recordings and segment-based syntheses. The semvec RMSE loss for
embeddings from generated and initially produced log-mel spectrograms shows that both GANs
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Figure 1 – Mean RMSE loss between final
produced and target acoustic for the semvec,
acoustic semvec, and acoustic objective. Init
refers to the initial cp-trajectory.

Figure 2 – Mean RMSE loss between embed-
ded final acoustic and target semantic vector
for the semvec, acoustic semvec, and acoustic
objective. Init refers to the initial cp-trajectory.

seem to miss out on details in the log-mel spectrograms, respectively in the cp-trajectories
producing log-mel spectrograms, that are important for the embedder. Nevertheless, planning
shows clear improvements in the semantic RMSE loss while optimizing solely on the semantic
loss and on the acoustic and semantic loss.3

Finally, Figure 5 shows the top 1 accuracies of the resulting semantic vector embeddings.
While planning on one objective alone only slightly improves accuracy, trying to match the
acoustic target while simultaneously aiming for the right semantic embedding vector performs
comparable to real world recordings.

Figure 3 – Exemplar Cp-trajectories generated
by the Cp-GAN for the word “Lehrer”. Colors
encode the first eight control parameters.

Figure 4 – Log-mel spectrograms generated by the Mel-
GAN for the word “Lehre” in comparison to segment-
based syntheses.

4 Discussion, Conclusion, & Future work

In conclusion we can say that the PAULE model is able to find and improve cp-trajectories in
a reasonable time (300 ms of speech planned in 3-4 minutes) using gradient based planning
starting from a target acoustic solely using a semantic vector. Combining an acoustic RMSE
loss between a predicted and target log-mel spectrogram, with a semantic loss in form of the
RMSE between embeddings in semantic space, leads to cp-trajectories that produce an acoustic,
which is as ”intelligible” for our embedder as a real world recording.

3The iterative nature of improving the semantic distance to a target semantic embedding is visualized by the
paths in the U-Map embedding [22] shown in the framework overview (Figure 6).
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Figure 5 – Word classification accuracy of produced acoustics by embedding the produced acoustic
into a 300 dimensional embedding space and selecting the closest fastText vector of a word type for the
different objectives.

We are aware that this cannot be equated with human performance. That is why the ac-
tual objective should be the perceived opinion of a human listener comparing synthesized to
recorded words. However, with respect to Arnold et al. [23] and the overall low recognition ac-
curacy of human listeners for single spliced-out words, we think a reasonable first step should
be to establish an iterative process for planning whole sentences before drawing this compar-
ison. Besides improving the computations by applying bigger vocabulary and even switching
the language to English, future plans include informing the model with sensomotoric feedback,
similar to the DIVA model [3]. An obvious approach would be to extract contact points from
the VTL, train another forward model to predict these contact points from cp-trajectories, and
use the forward model inversely to improve cp-trajectory inference even further.

Although certainly further improvements are possible, we conclude that the good perfor-
mance of PAULE implies that the generation of semantically well-comprehensible words can
be significantly improved by combining direct acoustic and cp-trajectory initializations with
inference-based planing that optimizes both acoustic quality and semantic discriminability.4
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