
A WINDOW-BASED METHOD FOR TARGET ESTIMATION

Paul Konstantin Krug

Institute of Acoustics and Speech Communication, Technische Universität Dresden, Germany

paul_konstantin.krug@tu-dresden.de

Abstract: The TARGET-APPROXIMATION-MODEL (TAM) describes time contin-

uous articulatory contours through a low-pass filtered sequence of linear functions

(targets). Such a representation of articulatory dynamics is well suited for compu-

tational simulations of articulatory speech production. The transfer of articulatory

trajectories, e.g. measurement data, into the TAM representation is often of par-

ticular interest. Although the open source software TARGETOPTIMIZER allows to

perform such a transfer successfully, its computational complexity is at least of or-

der O(n3), whereby n is the number of targets to be estimated. This work presents a

sequential fit with joint local optimization based on the TARGETOPTIMIZER back-

end. The proposed solution reduces the computational complexity to O(n).

1 Introduction

During computational simulations of articulatory speech production, the dynamics of articu-

lators may be governed by complicated (quasi-) time continuous trajectories [1]. Modelling

such trajectories can be done via the TARGET-APPROXIMATION-MODEL (TAM) [2], which

describes continuous articulatory contours through a low-pass filtered sequence of linear func-

tions (targets). While TAM-contours can easily be calculated from a given set of targets, the

reverse case, i.e. the determination of underlying targets from given contours is much more

difficult. Nevertheless, such a fit-based process is of great interest in order to create realistic

trajectories from measured articulatory data. It has been shown that the software TARGETOP-

TIMIZER 2.0 (TO 2.0) [3] successfully performs such fits and yields significant improvements

over previous attempts [2, 4]. However, fits with TO 2.0 suffer from high computational com-

plexity of order O(n3) or O(n4) in case of additional target boundary optimization, whereby n

is the number of targets to be optimized. This work presents a O(n) solution to this problem in

the form of a special sequential fit that features joint local optimization.

2 Methods

2.1 Modifications of the TargetOptimizer 2.0 Baseline

2.1.1 User Interface

The software TO 2.0 has been developed in C++ and is available as a GUI as well as a terminal

application [3]. However, both interfaces are rather inconvenient when it comes to processing

larger data sets, see Section 2.1.3. For this purpose, the backend was extended by a C++ API,

which is bound to a PYTHON package via CYTHON. In this way, the presented algorithms for

target estimation can be conveniently accessed via the popular PYTHON language. They are

available as a stand-alone package1 as well as directly integrated into the open source articula-

tory speech synthesis package VOCALTRACTLAB-PYTHON
2.

1https://github.com/paul-krug/Target-Approximation-Model
2https://github.com/paul-krug/VocalTractLab-Python
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Figure 1 – Target fits with and without onset optimization are drawn as solid and dashed lines, respec-

tively. Data points are drawn as orange dots, the first target boundary is drawn as a vertical dashed line.

2.1.2 Onset Optimization

The TO sets the onset value of the fit to be equal to the first value of the contour to be fitted.

This behaviour is not optimal, as it imposes a hard constraint for the fit of the first target, as

visualized in Figure 1. Therefore, fits of short contours with only single or a few targets can

result in an unnecessary large error between the fit and the respective data points. This work

fixed this issue by introducing the contour onset as a new parameter of the TO optimization.

Since this is a single parameter, and its optimization is independent of the number of targets to

be estimated, the increase in computation time due to this modification is only a small constant.

2.1.3 Data Pre and Post Processing

Although the predecessor software TO 2.0 could theoretically also process non-pitch data, in

practice this required (i) a source code modification to remove a Hertz-to-semitone scale con-

version that was applied to input data and (ii) non-pitch data would have to be loaded through

PitchTier files which is inconvenient. Further, general non-pitch input data may also come with

widely varying scales of the data. This leads to problems with the search space parameters,

which are defined to operate at a certain scale only.

This work presents solutions to all three issues: First, the log-scale conversion was removed.

However, fitted contours can be exported at the semitone-scale if the user wishes to do so. Sec-

ond, due to the convenient PYTHON interface users can load input data in various ways, either

from text files (csv, PitchTier, etc.) or directly from PYTHON-related data structures such as

PANDAS data frames or NUMPY arrays. Last but not least, the scaling issue was solved by

introducing an automatic normalization of the input contours to the range between [0,1]. After

performing the fit, the resulting targets are re-scaled to the original scale.

2.2 Window-based Sequential Fits

In contrast to earlier works [2], targets are not fitted one after another. Instead, a time window

with a variable length of w adjacent targets is defined, which is shifted gradually over the entire

sequence. In each step of this iterative process, w connected targets are jointly optimized.

This way, one can benefit from both the better performance of global optimization and the

lower computational complexity of sequential optimization. This procedure has the following

consequences: (i) The number of joint optimizations is nO = *(n−w)h−1++ 1, whereby h

denotes the hop length, i.e. the size of the window shift in each step. It applies 1 ≤ h ≤ w−1.

(ii) Multiple results may be obtained for the same targets and these must be somehow processed

in order to obtain a final result for the whole sequence. This process is visualized in Figure 2.

The computation time Γs of the window-based sequential fit is a linear function of the number

197



1
2

0.0 0.2 0.4 0.6 0.8 1.0
Time [s]

3
C
on
to
u
r
[a
rb
]

Figure 2 – A contour with five targets is optimized using a window-based sequential fit with w = 3 and

h = 1. The process takes three iterations, visualized from top (first) to bottom (last). The first targets of

the second and third iterations (indicated by red crosses) can not be used for the final fit contour due to

the TAM onset momentum. Targets that are fitted in more than one iteration can be averaged, or as done

throughout this work, the target from the last respective iteration is used. In this case that means: target

1 and 2 from iteration 1, target 3 from iteration 2 and target 4 and 5 from iteration 3.

of targets to be fitted and it is calculated via:

Γs =
nO

∑
i=1

Γg(ωi), (1)

whereby, Γg(ωi) denotes the computation time of the global optimization over a contour interval

ωi.

2.3 Window-based Sequential Fits with Boundary Optimization

The sequential fitting procedure becomes more complicated in case of the additional target

boundary optimization. This is due to the fact that the optimized boundaries depend on the

current position of the window. Optimized bounds of the same target will therefore differ for

varying window positions. One solution is to use the average position of the respective target

boundary. However, the values found for slope, offset and time constant will then no longer

correspond to the respective target boundaries, which can lead to large errors in the fit contour.

Also averaged values for slope, etc. are of little help in this case.

This work presents a solution using a multi-stage fit: First, a window-based sequential fit with

boundary optimization is performed. For overlapping targets, the average optimized boundary

positions are calculated. This procedure may be repeated nP −1 times (whereby nP denotes the

number of passes) by using the optimized boundaries from an iteration i as initial boundaries

for the next iteration i+ 1. Subsequently, a normal (fixed boundary) window-based sequential

fit is performed, which estimates the optimal target parameters within the determined (shifted)

boundaries. This way, the computation time Γs,B of the sequential fit with boundary optimiza-

tion still remains a linear function of the number of fitted targets:

Γs,B =

'

nP−1

∑
i=1

nO,i

∑
j=1

Γg,B(ωi j)

%

+
nO,i

∑
k=1

Γg(ωik)

#

#

#

#

#

i=nP

. (2)

Thereby, Γg,B(ωi j) denotes the computation time of the global fit with boundary optimization

over a contour interval ωi j.

2.4 A Monte Carlo Generator for TAM Contours

For the evaluation of fit performances, a Monte Carlo method for generating TAM contours

was developed. Thereby, TAM contours are derived from sequences of targets with random
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parameter configurations. Compared to evaluations with measured data (e.g. pitch data), this

method has the crucial advantage that the obtained contours are actually based on targets and

are not only described by targets. Consequently, the real underlying targets are available for

the evaluation of the fits. Several different data sets were created. In the case of the first set

(D1), 1000 individual targets (n = 1) were generated. For the second data set (D2), fifteen sets

(n = 1, . . . ,15) with a size of 10 target sequences each were generated using the Monte Carlo

method. Thereby, the target parameters were drawn from uniform distributions within the value

ranges that are given in Table 1. The slope parameters were balanced, which means that they

were either set to zero or drawn from the respective uniform distribution with a 50% chance.

For both data sets, the contours were calculated on the basis of the individual targets or target

sequences. TAM contours were derived at a sample rate of fTAM = 100Hz. With a probability

of 50%, the contour of a target was masked on a contiguous interval with a length between

40% and 60% of the target. Additionally, function values were individually shifted by a ran-

dom value drawn from a normal distribution (µ = 0, σ = 0.01). These two operations provide

contours that represent a more realistic scenario due to the similarities to pitch data. For a third

data set TAM contours were derived at different sample rates of (25, 50, 100, 200, 400)Hz. In

this case no masking was applied and no noise was added. The three data sets were used for

different experiments, as described in the following section.

tO [s] vO d [s] m [s−1] b τ [10−3 · s]

Range [0.0, 1.0] [0.0, 1.0] [0.1, 0.4] [-0.5, 0.5] [0.0, 1.0] [5, 25]

Table 1 – Value ranges of the parameters sampled by the Monte Carlo generator. The parameters tO and

vO refer to the onset time and onset value of a target sequence, respectively. The parameter d describes

the target duration. The parameters m, b and τ denote the slope, offset and time constant of a target [3].

2.5 Experiments

Different experiments were performed, which are described in more detail below. For the

evaluation of the fits, the following observables were defined: RD and ρD (which denote the

root-mean-square error (RMSE) and the Pearson correlation coefficient between the fit and the

contour data points, respectively), as well as Rm, Rb and Rτ (which denote the RMSE between

the estimated slope, offset and time constant parameters and the corresponding true parame-

ter values, respectively). For fits with boundary optimization, the RMSE RB between the true

boundaries an the optimized boundaries was calculated instead of Rm, Rb and Rτ , since a direct

comparison of true and estimated target parameters is not possible when the boundaries are dif-

ferent.

For all optimizations, the search space limits were set equal to the sampled target parameter

ranges shown in Table 1. The other optimization parameters were set to the TO 2.0 default

values, see [3]. All calculations were performed on an Intel® CoreTM i7-1065G7 CPU.

2.5.1 Experiment 1

The first experiment was conducted in order to evaluate the effect of onset optimization. For

this purpose, the data set D1 was used. All targets were fitted both without and with onset opti-

mization. Since the dataset contains only single targets, the distinction between sequential and

global fit is irrelevant. However, a fit with and without boundary optimization was performed

in each case, since the shift of the first target boundary is possible within certain limits [3] and
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provides additional freedom for the onset optimization.

In all further experiments, the onset optimization was used without being explicitly mentioned.

2.5.2 Experiment 2

For the second experiment, the data set D2 was used. Targets were estimated (without boundary

optimization) once with global optimization and once with the window-based sequential opti-

mization method with w = 3 and h = 1. Additionally, the same kind of fits were performed

on shifted boundaries and uniform distributed boundaries in order to test the performance un-

der the condition of non-optimal boundaries. In the former case, a Gaussian distributed noise

(µ = 0.0ms, σ = 50ms) was added to the true boundary positions. To prevent a possible time

overlap, the boundaries were then sorted in time ascending order. Subsequently, if the first

boundary was located after the first data point, the boundary was shifted accordingly. Similarly,

if the last boundary was located before the last data point, the boundary was shifted accordingly.

The evenly distributed boundaries were created as in the previous work [3].

2.5.3 Experiment 3

The third experiment was designed to evaluate the boundary optimization performances by

the global and window-based fits. For this experiment, the data set D2 was used with the same

shifted boundaries as in the second experiment. The same fits were carried out but with activated

boundary optimization. In the case of the sequential method, the parameter nP was set to 2. In

contrast to the previous experiment, only sequences with n ≤ 10 were considered in order to

reduce the high computational costs.

2.5.4 Experiment 4

The last experiment was conducted in order to investigate the target reconstruction performance

for different sample rates of the input contour. Information about this performance might be

helpful in situations where a specific data sample rate is required, e.g. for time series input or

output vectors of neural networks or if a certain kind of data reduction is desired.

For this purpose, the targets of data set D3 were estimated (without boundary optimization)

with the window-based sequential optimization method with w = 3 and h = 1.

3 Results

3.1 Experiment 1

The effect of the onset optimization is shown in Table 2. It can be seen that the onset optimiza-

tion significantly reduces the median value of RD by 5.2% (without boundary optimization) and

5.6% (with boundary optimization) compared to the respective case without onset optimization.

At the same time the median computing time is significantly increased by 37.5% and 93.3%

percent for fits without and with boundary optimization, respectively. Although this may sound

like a drawback, the increase in computing time is only a constant on the order of a few mil-

liseconds, so it does not matter much for fits of longer sequences. In case of ρD, Rm, Rb and Rτ

no significant differences were found between the fits with and without onset optimization.
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Γ [10−3 · s] ρD RD Rm [s−1] Rb Rτ [10−3 · s]

Baseline 8.0! 0.995 0.01075 0.078 0.02 1.13

Onset optimization 11.0 0.995 0.01019! 0.079 0.02 1.24

Boundary optimization 15.0! 0.994 0.01101 0.130 0.286 4.98

Onset + boundary opt. 29.0 0.994 0.01039! 0.139 0.279 5.08

Table 2 – Results of experiment 1. The table shows the median values. Better values are indicated by

bold numbers. A star indicates a significant difference between the values obtained without and with

onset optimization. Thereby significant means p < 0.05 based on Mood’s median test.

3.2 Experiment 2

The left plot in Figure 3 shows the computation time Γ required for the fits as a function of

the target sequence length n. It can be seen that the computation time in the case of the global

optimization (Global) is well described by a third order polynomial, while the data for the

window-based sequential method (WBS) can be described by a linear function. The middle and

right plots in Figure 3 show the RD and ρD distributions, respectively. It can be seen that the

window-based method reduces the error between fit and contour compared to the global method

while increasing the corresponding correlation coefficient. The distributions are significantly

different (p < 0.01), based on two sided Kolmogorov–Smirnov (KS) tests.
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Figure 3 – Left: Computation time needed for fits with joint optimization (Global) and the proposed

method (WBS) as a function of the number of targets within a given contour. Middle: RMSE between

the fit and respective data points. Right: The corresponding distributions of the correlation coefficient.

Figure 4 shows the corresponding results for Rm, Rb and Rτ . The distributions of fits using the

window-based method are consistently shifted to lower values compared to the data from the

joint optimizations. The respective distributions are significantly different (p < 0.01), based on

two sided KS tests.
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Figure 4 – Distributions related to the target parameter estimation accuracy.
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Figure 5 – Results of fits without boundary optimization on shifted (SB) and uniform boundaries (UB).

In the right plot polynomials of order 3 and 1 were used to fit the Global and WBS results, respectively.

Results of target estimation fits using WBS are indicated by hatched boxes in the middle and left plots.
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Figure 6 – Results of fits with boundary optimization. In the right plot polynomials of order 4 and 1

were used to fit the Global (SB) and WBS (SB) results, respectively. Results of target estimation fits

using WBS are indicated by hatched boxes in the middle and left plots.

The results of the global and window-based sequential target estimation for data set D2 with

shifted boundaries (SB) and uniformly distributed boundaries (UB) are shown in Figure 5. One

can see that the optimizations with uniform boundaries require less computation time than with

the shifted boundaries (left plot). However, the RMSE tends to be larger (middle plot) and the

correlation coefficient values tend to be smaller (right plot). No significant differences were

found between the respective distributions of the global and the window-based method.

3.3 Experiment 3

Figure 6 shows the results of the third experiment. The left, middle and right plots show the

computation time, the distributions of RD and the distributions of ρD, respectively. Results are

shown for the fits with boundary optimization, where the boundaries were initialized with the

shifted real boundaries (SB). In addition, the results for fits with boundary optimization and

uniform boundary initialization are shown (UB). It can be seen that the WBS method signifi-

cantly reduces the computation time, but the error RD is significantly larger and the correlation

coefficient is significantly smaller compared to the global optimization method.

The median values for RB are 31.9ms (SB) and 56.8ms (UB) in case of the global optimization

and 212.7ms (SB) and 198.2ms (UB) in case of the window-based sequential optimization,

which performs significantly worse in this regard (p < 0.01, based on a two-sided KS test). In

both cases no significant difference was observed between the RB distributions of the SB and

UB optimizations. The median RMSE between the true and shifted boundaries is 43.6ms. This

means that in the case of global boundary optimization on the shifted boundaries, the median
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Figure 7 – Distributions related to target reconstruction accuracy, visualized as functions of the TAM

sample rate fTAM.

value was reduced. However, this result is not significant. In fact, the RB distribution calculated

from the true and shifted boundaries is significantly more concentrated around lower values

compared to those of the optimized boundaries (p < 0.01, based on two-sided KS tests).

3.4 Experiment 4

Figure 7 shows the effect of the TAM sample rate on the reconstruction accuracy of the under-

lying target parameters. In a direct comparison of the sample rates 25Hz and 400Hz, RD, Rm,

Rb and Rτ are reduced by 74.7%, 25.6%, 35%, and 34.7%, respectively.

4 Discussion

It was shown that window-based sequential target fits can achieve and even surpass the perfor-

mance of global fits while reducing the computational complexity from O(n3) to O(n). The

computational complexity could be similarly reduced in the case of boundary optimization.

However, it was observed that the error between the optimized boundaries and the real bound-

aries is greatly increased this way. At the same time the error between the fit and the respective

contour is large and on average worse than in the case of the same optimization without the

multi-stage method. A larger window length might help but this is again at the expense of

higher computation time. In general, the question arises as to the usefulness of boundary op-

timization if, even in the case of global optimization, the error between the optimized and real

boundaries is not significantly minimized. In fact, the additional degrees of freedom may rather

allow overfitting of a given contour. In future work it should be investigated whether the true

boundary positions and the other target parameters can be estimated with high precision using

deep neural networks. The Monte Carlo generator for articulatory trajectories presented in this

work is well suited to generate arbitrarily large data sets for the training of such networks.
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