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Abstract: An event in an acoustical scene is salient if it is different from other

events in the scene. The event in this paper is the utterance gut in German and the

sound of keys falling on a hard surface. The other events are white and coloured

noise and a constant sinusoidal tone. Humans are able to detect salient acoustic

events in a scene with background signals carrying no information due to their

stationarity like noise or a constant sinusoid. A lot of research has been done to

detect salient events in image processing which is based on the Kullback-Leibler

divergence. The basis of this approach is the prior and posterior information carried

by the corresponding probability densities which is known from video analysis and

transferred to an audio scene. It is shown that the relevant events utterance and the

sound of the falling keys can be marked reliably even if they are severely corrupted

by irrelevant events in the background like noise or a constant sine wave.

1 Introduction

Assume that your eyes are closed and you listen to the acoustic events in your environment. If

there is a vacuum cleaner running you might realize this event when it is switched on or off, but

if it is running continuously you will not pay attention to it. This is different if a human starts

to speak: you will listen to the utterance to find out whether it carries information adressed to

you. If not, you might not be interested to listen and the utterance is not salient any more.

The question is how can we extract saliency from the sensed data? In the case of images,

saliency might be based on a change of colour or texture - a red rose in a green environment

of leaves - or in video streams the speed of the movement of objects - a police car is driven at

high speed - might be salient. A similar event in an acoustic scene is the sound of the siren of a

police car with the background of traffic noise.

But how to detect salient events and how to measure saliency? No doubt: the change of a

feature in a given environment is the key to detect salient events. But which are the appropriate

features? On the field of visual saliency many features have been proposed [1][2][3].

An acoustic signal can be described in the time and frequency domain, respectively. If a

signal carries information it will be the sample function s(t) of a random process [4] which is

only short-time stationary. Thus we need a description of the process along the time and the

frequency axis. An appropriate tool for this description is the spectrogram S(t, f ). Using this

tool we are able to discriminate between salient events and those without saliency. Imagine you

listen to the sound of a sine wave with no changes in amplitude, frequency and phase: it will

carry no information. In the spectrogram such a sinusoid corresponds with a line parallel to the

time axis with no change in frequency and intensity. Similar to that is a white noise process

with a homogenious - ideally a constant - pattern all over the spectrogram. Both signals are not

salient and do not evoke attention for a listening human.

No question: without intensity there is no salient event [5]. But intensity alone and even

changes in intensity are not sufficient to detect salient events. Instead, statistical properties of

the sensed data are exploited and a measure based on Bayesian Surprise [2] is used.
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This measure is the basis for the Kullback-Leibler divergence [6] which compares the prob-

ability density of the prior state with the probability density of the posterior state when the

sensed data are exploited.

2 A Measure of Saliency

Assume that prior information about an event is given by the probability density function

fSpri
(spri) which is calculated from old data. Receiving new data, the posterior probability

density fSpri|Spos
(spri|spos) can be calculated. Applying the Bayes rule [4], the prior information

given the posterior data yields

fSpri|Spos
(spri|spos) =

fSpos|Spri
(spos|spri)

fSpos
(spos)

· fSpri
(spri). (1)

If the new data determining the conditional density fSpri|Spos
(spri|spos) do not carry saliency, the

prior density fSpri
(spri) is not affected. Only if the conditional density differs significantly from

the prior density the data carry saliency. For the comparison of both densities the Kullback-

Leibler divergence is used

DKL( fSpri|Spos
(spri|spos), fSpri

(spri)) =

(

s
fSpri|Spos

(spri|spos) · log2

'

fSpri|Spos
(spri|spos)

fSpri
(spri)

%

dspri.

(2)

The problem is to allocate the probability densities from the available data: what are the prior

data, what the posterior data? To calulate both entities, the data stream of the sound is cut into

overlapping blocks. The prior data are given by all available data up to the actual data block

and the posterior data include in addition the actual data block.

3 The Saliency Map Extracted from Audio Data

Audio signals can be described in the time and the frequency domain. A representation in both

domains is given by the spectrogram S[k,n] with k denoting the discrete time parameter and n

denoting the discrete spectral or frequency parameter

S[k,n] =

#

#

#

#

#

k

∑
i=k−N+1

s[i]e− j2πin/N

#

#

#

#

#

2

, 1 ≤ n ≤ N (3)

with N the length of the observed data s[k] from which the spectrum is calculated.

From the samples S[k,n] of the spectrogram given in Eq.3 the prior density fSpri
(spri) and

the posterior density fSpri|Spos
(spri|spos) have to be calculated. For this calculation the vectors

Spri = (S[k−1,n],S[k−2,n], . . . ,S[k−K,n])T

and

Spos = (S[k,n],S[k−1,n], . . . ,S[k−K,n])T

are used with K a free parameter which in principle can approach K → ∞. Thus we have

fSpri|Spos
(spri|spos) = g(s|Spos), fSpri

(Spri) = g(s|Spri) (4)

in a simplified representation.
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For the saliency depending on the frequency paramater n follows

SA[k,n] = DKL(g(s|Spos),g(s|Spri))

=
( ∞

−∞
. . .

( ∞

−∞
g(s|Spos) · log2

&

g(s|Spos)

g(s|Spri)

$

ds (5)

which is known as the saliency map [5].

To simplify the calculation it is assumed that the densities g(s|Spri) and g(s|Spos) are Gaus-

sian. In this case only the means µpri, µpos and variances σpri, σpos of the densities are required.

From Eq.5 follows [7]

SA[k,n] = DKL(g(s|Spos),g(s|Spri))

=
1

2

*

log2

σ
2
pri

σ2
pos

+
σ

2
pos

σ2
pri

−1+
(µpos −µpri)

2

σ2
pri

)

(6)

with the means and variances as unbiased estimates [4] given by

µpri[k,n] =
1

K

K

∑
i=1

S[k− i,n]

µpos[k,n] =
1

K +1

K

∑
i=0

S[k− i,n]

σ
2
pri[k,n] =

1

K

K

∑
i=1

(S[k− i,n]−µpri[k,n])
2

σ
2
pos[k,n] =

1

K +1

K

∑
i=0

(S[k− i,n]−µpos[k,n])
2. (7)

The measure in Eq.6 depends on time and frequency. Since only the dependency on time

is of interest, the dependency on frequency is suppressed by averaging

SA["] =
2

N

N/2−1

∑
n=0

SA[",n] (8)

which yields the saliency measure.

✲
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N/2

✲

SA["

Figure 1 – Signal flow for data processing: SEGmentation, SPECtrum, ESTimation of µ and σ ,

Kullback-Leibler Divergence, AVeraging.

The calculation of the saliency measure SA["] is visualized by the block diagram in Fig.1

with the blocks SEG for segmenation, SPEC for calculation of the spectrogam, EST for estima-

tion of the means µpri, µpos and variances σ
2
pri, σ

2
pos, KLD for the calculation of the Kullback-

Leibler divergence, and AV for the averaging over the N/2 frequency dependent saliency values

SA[",n].
The signal s[k] to be analysed is first cut in block SEG into overlapping data blocks of

length N as shown in Fig.2. The parameter N is also the length of the Fast Fourier transform

(FFT) which is calculated in block SPEC. The consecutive blocks have an offset of Lo samples
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in order to reduce the computational load on one hand and to increase the difference of the

densities compared by the Kullback-Leibler divergence on the other hand. The parameter N

controls the spectral resolution and the parameter Lo depends on the correlation of the analysed

signal. Lo should be large enough so that the data blocks are not correlated any more.

SEG k−Lo

k−Lo +1−N k−Lo

SEG k

k+1−N k

Figure 2 – Segmentation of the analysed signal s[k] into consecutive overlapping data blocks.

By the block SEG the sampling rate is reduced by 1/Lo and thus the counter k is replaced

by " which is equivalent to down sampling. In block SPEC the block-dependent spectrogram

S[",n] according to Eq.3 is calculated by FFT. As shown in Fig.3, the estimates of the means

and variances according to Eq.7 are determined in block EST using 0 ≤ " ≤ K values for the

prior estimates and 1 ≤ " ≤ K +1 values for the posterior estimates of the spectrogram S[",n],
respectively. The parameter K determines the reliability of the estimate, i.e. the larger K is the

lower is the variance of the estimate but the larger is the computational load and the time delay.

From estimates of the prior and posterior means and variances the values SA[",n] of the saliency

map according to Eq.6 are calculated in block KLD. Finally, these values are averaged over the

frequency parameter n using N/2 values since SA[",n] is symmetric with respect to N/2 and

thus averaging over N does not improve the accuracy of the result.

Spri

"−K "−1

Spos

"

Figure 3 – Data blocks used for estimation of the prior and posterior means and variances.

4 Extracting Salient Events from Noisy Recordings

The signal of interest is the combination of the the German word gut by a female speaker and

the sound of keys falling on a table. It is assumed that both, the utterance and the sound of

the falling keys will be detected as salient events. It is not the task of the saliency detection

to identify the salient events as speech and the sound of the falling keys or something similar.

The representations of the signal s[k] in the time and frequency domain are given in Fig.4 with

the sampling frequency fs = 48 kHz and around 80,000 samples. There is some residual noise

visible in the time domain caused by the microphone and the amplifier which is mapped in the

spectrogram into a narrow frequency band around f = 18 kHz.

In the time domain the utterance in the first half and the sound of the falling keys in the

second half of the data record are clearly visible in Fig.4. The samples in the interval 2,640

≤ k ≤ 18,960 which is with t = k/ fs equivalent to 0.055 s ≤ t ≤ 0.395 s belong to the utterance

and at k = 41,571 and k = 57,893 which is equivalent to t = 0.866 s and t = 1.206 s the peaks

of the sound of the falling keys are found. The low level of the residual background noise is

almost not audible for the human ear.

The spectrogram S[k,n] is shown in the center of Fig.4 with t = k/ fs along the time axis

and f = n · fs/N along the frequency axis. The utterance covers the spectral components around
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Figure 4 – Acoustic events. Time domain (left), spectrogram (center), saliency measure (right).

t = 0.225±0.175 s whereas the sound of the falling keys are found at t = 0.866 s and t = 1.206 s

which corresponds with the time domain representation on the left. The basis of the spectrogram

is the FFT [4] with N = 512 samples.

The magnitude of both, the utterance and the sound of the falling keys is maximum at low

frequencies and decays with increasing frequency up to half of the sampling frequency at f = 24

kHz. At about f = 18 kHz is a sound of a constant low-amplitude which corresponds with the

residual sound known from the representation in the time domain.

On the right side of Fig.4 the saliency is plotted in the linear scale. For the calculation

N = 512 was used for the block length and FFT, respectively. Lo = 128 was chosen for the

offset between data blocks and the calculation of the means and variances is based on K = 100

samples for the prior and posterior density functions.

At the position of the utterance and of the sound of the falling keys the saliency SA[k] is

significantly larger than the values at the other positions. SA[k] shows a set of maxima for the

utterance and two distinct maxima for the sound of the falling keys. It is interesting that only

the beginning of a salient event is monitored. Therefore the saliency measure decays after the

initial peak and drops at around k = 1000 samples despite the fact that the utterance is not yet

finished. Between the salient events the saliency measure is not zero but keeps a more or less

constant low level because of missing novelty. Many reasons can be given for this effect: first,

there is some background noise, even if it is low so that it would not be registered by a human

listener. Second, the parameters to calculate the saliency measure are based on estimates with

a limited accuracy. The residual background noise at f = 18 kHz which was visible in the time

domain representation and the spectrogram has obviously no influence on the saliency.

In the sequel the influence of corruptions will be investigated. Coloured noise, white noise

and a sinusoidal signal will be added to the previously investigated sound signal. The coloured

noise is a white noise process shaped by a Butterworth filter [8] of order n0 = 6, the cutoff

frequency fc = 6 kHz or fc/ fs = 0.125 and the amplitude an = 0.1. This results in the signal to

noise ratio SNR=3 dB averaged over die two components, utterance and the sound of the falling

keys. In Fig.5, again the corrupted signal s[k], the spectrogram S[k,n] and the saliency measure

SA[k] are shown from left to right.
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Figure 5 – Acoustic events corrupted by coloured noise. Time domain (left), spectrogram (center),

saliency measure (right).
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From the recording the noise is clearly audible and also visible in the time and frequency

domain, respectively. In the time domain the amplitudes of the utterance rise above those of

the coloured noise significantly which is not true for the sound of the falling keys. In the

spectrogram in the center of Fig.5 the low frequency components of the utterance and the sound

of the falling keys are totally covered by the coloured noise up to the cutoff frequency at fc = 6

kHz. Above this limit the spectrogram is more or less identical with the spectrogram of the

uncorrupted signal.

In the saliency measure on the right side of Fig.5 the positions of the utterance and the

falling keys are marked at the correct positions. There are no significant differences between the

saliency measures of the uncorrupted signal shown in Fig.4 and the one corrupted by coloured

noise in Fig.5. In general the magnitudes of the saliency measure for the sounds corrupted by

coloured noise are lower than those in case of no corruption. Additionally a very low component

is seen at k = 36,900 in case of coloured noise whereas this component is not found in the

salience measure SA[k] of the uncorrupted signal. Nevertheless, the Kullback-Leibler divergence

shows a high level of robustness with respect to corrupting noise.

The next interferer is white noise with the signal to noise ratio of SNR=-3 dB shown in

Fig.6. The sound signal of the falling keys are almost totally covered by the noise. This is also

seen in the spectrogram where only the strong low frequency components of the utterance and

the falling keys are visible.
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Figure 6 – Acoustic events corrupted by white noise. Time domain (left), spectrogram (center), saliency

measure (right).

Despite the strong influence of the white noise the saliency measure on the right of Fig.6

shows clearly the positions of the utterance and the sound of the falling keys along the time

axis. In general the amplitudes are much more reduced with respect to those in case of no

corruption and coloured nose. The first spike at the beginning of the utterance is very high

in comparison with the other spikes and compared to the saliency measures of the uncorrupted

sounds and those corrupted by coloured noise. The values of the saliency measure SA[k] between

the two acoustical events are much higher with respect to the spikes indicating salient events in

comparison to the cases with no corruption and coloured noise in Fig.4 and Fig.5, respectively.

Nevertheless, a threshold could be found to separate the acoustical events from the corrupting

white noise.

As the last interferer a sinusoid of frequency f0 = 480 Hz or f0/ fs = 0.01 and amplitude

as = 0.75 is investigated from which a section is shown in Fig.7. This section is positioned

between the utterance and the sound of the falling keys as can be seen from Fig.8. The signal

to noise ratio is SNR = −17.5 dB for the utterance and the falling keys with respect to the

corrupting sinusoid. By this the amplitudes of the salient events almost do not rise above the

noise amplitudes.

Due to the resolution the frequency of the sinusoid cannot be read from the time domain

representation as Fig.8 shows. But in the spectrogram S[k,n] in the center of Fig.8 a sharp spec-

tral line is visible at f = 480 Hz which does not change with time. The rest of the spectrogram
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Figure 7 – Section of the corrupting sinusoidal signal.

is identical with the spectrogram of the uncorrupted sound signal in Fig.4.
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Figure 8 – Acoustic events corrupted by a sinusoid. Time domain (left), spectrogram (center), saliency

measure (right).

The amplitudes of the saliency measure on the right side of Fig.8 are lower than those for

the uncorrupted signal and the signal corrupted by the coloured noise but larger than those in

case of white noise. Furthermore, small amplitudes are visible between the salient events which

are caused by the sinusoidal interferer. But still the location of the salient events are clearly

visible.

5 Conclusion

In this paper it has been shown that the saliency measure SA[k] based on the Kullback-Leibler

divergence is a useful tool to extract saliency from an acoustic scene. Background noise and

sinusoids can be suppressed significantly which is shown by comparing the spectrogram and

the saliency diagram SA[k] which is calculated from the saliency measure SA[k,n] averaged over

the frequency parameter n.

Whereas the spectrogram can be used to identify salient events in the environment of sinu-

soidal interferers this applies only partially for coloured noise and fails totally with white noise.

But in all these cases the saliency measure reliably detects salient events.

It has been shown that besides other parameters the type of corruption influences signif-

icantly the salincy measure. For practical applications it would be of interest to reduce this

influence. Furthermore the question should be answered whether the magnitude of the saliency

measure tells something about the importance of the events generating these magnitudes. That

means for the example discussed in this paper whether the utterance is more important than the

sound of the falling keys or vice versa.
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