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Abstract: The historical bandwidth of telephone speech (0.3 kHz to 3.4 kHz),
which is still used today for speech transmission (e.g. in the AMR-codec [1])
leads to reduced intelligibility and naturalness of the transmitted speech. New
mobile devices may use artificial bandwidth extension (ABE) to improve the re-
ceived narrow-band (NB) speech quality. Aiming to reconstruct missing frequency
components of NB speech on the receiving end, ABE often adopts the source-
filter-model of human speech to reconstruct excitation and spectral envelope of the
speech signal separately. In the extension of the excitation, no existing method ex-
ploits the fact that the wide-band (WB) excitation for vowel sounds can be modeled
by parametric functions with nearly no perceptible differences [2]. This work in-
vestigated the possibility to extract optimal model parameters from the NB speech
to use them for high quality ABE of the excitation for vowels. The proposed al-
gorithm objectively meets or exceeds a state-of-the-art reference algorithm, but is
currently subjectively slightly inferior.

1 Introduction

Human speech frequency components cover the entire range of human-perceptible frequencies.
Therefore, the historical telephone speech bandwidth of 0.3 kHz to 3.4 kHz, which is still used
for speech transmission (for example in the AMR codec [1]), leads to reduced intelligibility
and naturalness of the transmitted speech. Newer codecs like EVS [3] address this by using
sampling rates of up to 48 kHz. However, due to legacy devices transmitting narrow-band (NB)
speech signals only, newer mobile devices will also suffer from reduced speech quality and
naturalness. One solution to improve speech quality on mobile devices receiving NB speech
is artificial bandwidth extension (ABE): the reconstruction of the missing frequency content
on the receiving end. ABE methods usually adopt the source-filter-model of human speech
(see e.g. [4]) to reconstruct the frequency components of the excitation signal and the spectral
envelope separately. Most often, excitation signal and spectral envelope are separated using
linear predictive coding (LPC)-analysis. Following this approach, [5, 6, 7, 8] copy or shift
the frequency components of the NB excitation signal to frequency ranges where excitation
signal components are missing. [5, 9, 8, 10] apply non-linearities to the NB excitation signal
or the NB speech signal to generate missing excitation signal frequency components, while
[11, 12, 13] try to reconstruct missing frequency components by sinusoidal synthesis. [14]
tries to estimate missing frequency components from learned basis functions. Apart from [14],
all of the reviewed studies extended the bandwidth of the flat-envelope LPC-analysis residual
signal, thereby ignoring the excitation model information captured by glottal models like the
ones proposed by Rosenberg [2], Liljencrants and Fant [15] or others [16, 17, 18, 19, 20].
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The excitation model information is therefore divided among the flat-envelope LPC residual
(containing the fundamental frequency and the harmonic structure) and the LPC synthesis filter
(containing the spectral envelope). This work instead uses a glottal flow signal or the glottal
flow derivative (GFD) signal as the excitation signal rather than the LPC residual signal and
thus attempts to model full-bandwidth excitation signal more accurately.

2 Methods and algorithms

2.1 Source-filter model and inverse filtering

According to the source-filter model, a speech signal s(n) may be written as

S(z) =U(z)V (z)R(z) = U̇(z)V (z), (1)

in the z-domain, where S(z) is the z-transform of the speech signal s(n), U(z) is the z-transform
of the glottal flow signal u(n), V (z) the vocal tract filter and R(z) the radiation characteristic.
A simple approximation of the radiation characteristic is R(z) = 1� z�1, which is a first-order
high-pass filter approximating differentiation at low frequencies. Therefore, using the commu-
tative property of equation 1, the product of U(z) and R(z) approximates the GFD signal u̇(n)
with z-transform U̇(z) as given on the right-hand-side in equation 1. The GFD u̇(n) can then
be extracted by a simple implementation of inverse filtering. Assuming V (z) can be determined
(e.g., using LPC analysis), it is possible to extract u̇(n) using

U̇(z) =
S(z)
V (z)

. (2)

In this work, V (z) was extracted using LPC analysis of an order of 20 of the pre-emphasis
filtered s(n), where the pre-emphasis is done using the filter P(z) = 1� z�1.

2.2 Spectral envelope extension

The envelope extension, which is part of a complete ABE system, was beyond the scope of
this work. Therefore, the proposed excitation extension as well as the excitation extension
reference algorithm were combined with the known wide-band (WB) spectral envelopes for
evaluation. In practise, an additional algorithm for envelope extension is necessary and will
affect the overall system performance. As mentioned in [14], for systems using the LPC residual
signal excitation, the envelope extension seems to be critical for high frequencies. High quality
excitation signal extension seems to be mainly important for the recovery of low frequency
components. It is reasonable to expect that the findings of [14] also hold for the proposed
system to a certain extend. But since the glottal excitation contains more modeling information
in contrast to the widely used LPC residual excitation, using the proposed method, the excitation
extension gains importance over envelope extension in the overall system.

2.3 Frame-based signal processing

The signal processing was done by segmenting the WB and NB speech signals sWB and sNB

into frames s(i)WB an s(i)NB of 20 ms length and 75 % overlap of successive windows, where i is the
frame index. Using the autocorrelation method, the LPC-coefficients a(i)WB were extracted from
the pre-emphasized WB speech signal frame s(i)WB,pre for LPC-analysis filtering of the NB speech

signal frames s(i)NB yielding the GFD u̇(i)NB. The model-based excitation extension (MBEE) then
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Figure 1 – Signal processing pipeline of the proposed ABE-system
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Figure 2 – Flow graph of the model-based excitation extension

determined the GFD WB estimate ˜̇u(i)WB, whose frequency components ˆ̇u(i)EB outside of the tele-
phone band are extracted by a telephone bandstop and used to extend u̇(i)NB to the bandwidth ex-
tended GFD ˆ̇u(i)WB. LPC-synthesis filtering yields bandwidth extended WB speech signal frames
ŝ(i)WB which are used to synthesize the bandwidth extended speech signal ŝWB by overlap-add.
Figure 1 shows the signal processing pipeline of the proposed algorithm.

3 Model-based excitation extension

Figure 2 shows the basic idea of the MBEE. For the i-th frame, the parameters p(i) of a glottal
model are optimized in order to fit the GFD model function ˜̇u(i)WB to the observed NB GFD u̇(i)NB
in the telephone band. This is done by repeatedly comparing u̇(i)NB to the NB version ˜̇u(i)NB of the
model function ˜̇u(i)WB and corresponding adjustment of the model parameters p(i) by a chosen
optimization algorithm.

3.1 Implementation

3.1.1 Glottal model

Different glottal models were compared in terms of modeling capacity. Since it combines a
small number of parameters with good modeling accuracy, the Rosenberg model B was chosen
[2]. Its GFD is given by

˜̇uWB(t) =
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(3)
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Figure 3 – WB-optimization flow graph

Therefore the model parameters to be determined by optimization were TP, TN, a , but also T0.
Furthermore, a parameter TS was necessary that quantified the shift of the fundamental period
given by equation 3 relative to the start of the current frame.

3.1.2 Cost function and performance measure

The mean squared error (MSE) of two length N signals s1 and s2

dMSE(s1,s2) =
1
N

N�1

Â
n=0

(s1(n)� s2(n))2. (4)

was chosen both as the cost function dMSE(u̇
(i)
NB, ˜̇u(i)NB), or narrow-band mean squared error

(NBMSE), and as the performance measure dMSE(u̇
(i)
WB, ˜̇u(i)WB), or wide-band mean squared error

(WBMSE), since it is easy to calculate and sensitive to phase differences between the compared
signals. The WBMSE reflects the final goal of optimal WB-modeling. For reference, the best
possible WBMSE was estimated by averaging the WBMSEs of 20 non-overlapping frames for
each of the vowels [a:], [e:], [i:], [o:], [u:] where the WBMSEs were calculated by optimizing
model parameters as shown in Figure 3 using three successive runs of MATLABs GlobalSearch
for optimization where the initial values of the parameters of optimization runs two and three
were set to the values found in the respective prior run. The resulting mean WBMSE (WBMSE)
was calculated as 0.0344.

3.1.3 Parameter optimization

The parameter optimization as shown in Figure 2 was done using three successive runs of MAT-
LABs GlobalSearch for optimization where the start values for the parameters of optimization
runs two and three were set to the values found in the respective prior run. The optimization
was configured with parameter boundaries as given in

e  a  1 (5)

and
0.01 ·T0,min  TP,TN  0.99 ·T0,max, (6)

where e in eq. 5 is the machine epsilon. The upper bound of a was chosen based on experience
but much bigger than the values known from the training data being in the order of 0.001. T0,min
and T0,max are the boundaries of the fundamental period T0 and were calculated as

T0,min =
1

0.95 · f̂0
and T0,max =

1
1.05 · f̂0

(7)

based on a fundamental frequency estimate f̂0 calculated prior to optimization. An estimate T̂S
for the parameter TS was calculated to define its optimization boundaries as

T̂S �0.1 · 1
f̂0

 TS  T̂S +0.1 · 1
f̂0
. (8)
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T̂S was calculated as the maximum of the short-time variance detecting sudden changes as the
glottal closing instant (GCI) used for definition of the shift of the fundamental period against
the start of the current frame. Finally, the inequality constraint

TP +TN  T0 (9)

was used for optimization, to ensure, that the length of a glottal pulse does not exceed the
fundamental period.

An optimal solution found in the NB domain did not necessarily correspond to an optimal
solution in the WB domain. The WBMSE using a three-run global NB optimization as shown in
Figure 2 was calculated as 0.179, which was much more than the reference WBMSE determined
in section 3.1.2. So instead of using the optimal NB parameters directly, they were instead
mapped to a set of WB parameters using regression.

3.2 Optimization with subsequent regression

While the parameters T0 and TS were found reliably by optimization in the NB domain, the
parameters a , TN and TP found in the NB domain did not correspond to good fits in the WB
domain. As a solution, for each of the latter parameters, ensembles of bagged regression trees
were used to map the parameters found by optimization to new parameters a , TN and TP for
better WB modeling. Training was done using a data-set created from recordings of the vowels
[a:], [e:], [i:], [o:], [u:], [E:], [ø:], [y:] uttered with natural, low and high fundamental frequency
by a single 24-year old male speaker. 60 non-overlapping frames per recording yielded 1440
frames, for each of which the parameters were determined by NB and WB optimization as
shown in Figures 2 and 3. The hyperparameters were trained using Bayesian optimization with
a custom leave-one-vowel-out cross-validation, where cross-validation was performed holding
out all the data of a specific vowel for validation and averaging the results for all vowels. This
was done to prevent the validation data set to contain data from vowels occurring in the training
data set. The WBMSE of the optimization with subsequent regression was calculated as 0.0674.

4 Evaluation

4.1 Reference algorithm

A reference excitation extension (REFEE) algorithm capable to extend the LPC residual excita-
tion signal in contrast to the glottal excitation signal to low as well as to high frequencies outside
of the telephone band was implemented. The REFEE is a simplified version of the algorithm
given in [9] which uses a non-linearity to create harmonics outside of the telephone-band for
a WB LPC-residual excitation signal. In contrast to [9], the the power ratio for matching the
energies of the synthesized signal and the input signal in the telephone-band is not smoothed
by a filter since it is not necessary when using the correct WB envelope instead of a bandwidth
extended one as done in this work. Also, the phase manipulation described in [9] was omitted
due to a lack of precise information of where to extract the phase in the telephone band, which
is assigned to the synthesized signal in the extension band.
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4.2 Objective evaluation

The MBEE as well as the REFEE results were compared to original signals for different vowels
in terms of the spectral distortion

dLSD(l ) =

vuut 1
M

·
M

Â
µ=1

✓
20log10

H(µ,l )
Ĥ(µ,l )

◆2
(10)

of frame l as given in [21] with M being the number of frequency bins and H(µ,l ) and Ĥ(µ,l )
the DFT spectra at bin µ . The mean spectral distortion for each vowel was calculated from
non-overlapping 20 ms frames taken from 1 s speech signals as shown in Table 1. Although
the performance of each algorithm differs depending on the vowel, they seem to perform nearly
equally well averaged over all vowels, with the MBEE being slightly better in terms of averaged
performance.

dLSD LSD REFEE LSD MBEE
[a:] 7.0019 dB 6.4650 dB
[e:] 6.0879 dB 9.4833 dB
[i:] 6.7672 dB 7.1764 dB
[u:] 9.2943 dB 7.5153 dB
[o:] 10.0271 dB 8.1638 dB
[E:] 6.5775 dB 6.9834 dB
[ø:] 7.6535 dB 6.6201 dB
[y:] 8.1960 dB 7.9715 dB
mean 7.7007 dB 7.5473 dB

Table 1 – LSD for vowels bandwidth extended using REFEE- and the MBEE algorithm respectively

4.3 Subjective evaluation

To evaluate if the proposed ABE method may improve NB speech, a listening experiment with
10 participants (5 female, 5 male, age 20 to 36, median age 24) was conducted using Praat [22].
Unfortunately, due to the CoViD-19 pandemic, the test had to be conducted remotely leading to
differing test set-ups. All participants used headphones (of varying make and model) and were
asked to conduct the test in a quiet environment. The stimuli comprised excerpts of length of
1 s from natural speech recordings of the vowels [a:], [e:], [i:], [o:], [u:], [E:], [ø:], [y:] uttered
by a 24 year-old male speaker. Each recording was weighted with a Tukey-window for 0.25 s
fading in and 0.25 s fading out. In each trial in the experiment, the participants were presented
with three versions of a vowel sound. The first version was always the original WB sound and
the participants were asked to identify, which of the following two items they considered more
similar to the original. The two items following the original were either NB versions, again the
original WB sound or bandwidth extended speech signals using either the reference algorithm
or the proposed algorithm for ABE. While the original recordings were done at 44.1 kHz with
16 bit quantization, all excerpts presented during the listening test were processed versions at
a sampling frequency of 16 kHz. Each possible combination was presented once during the
test. To avoid bias towards the stimulus played first after the WB original, each combination of
two stimuli to choose occurred in both possible orders after the original at some point during
the test. The participants were able to replay the sequence of the three signals one time before
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making their decision. Table 2 summarizes the results. They indicate that despite the changing
test conditions, the participants were on average able to differentiate very well between the WB
and NB signals as well as between the WB and extended signals. The table also shows, that the
extended signals were preferred to the NB signals for both ABE-algorithms. However, it seems
that the reference algorithm is slightly preferred against the proposed one in direct comparison.

competing recordings preferred recording percentage
WB-NB WB 98.75
WB-REFEE WB 91.25
WB-MOD WB 96.25
REFEE-NB REFEE 95.00
MBEE-NB MBEE 94.37
REFEE-MBEE REFEE 63.75

Table 2 – Recordings preferred in subjective evaluation (all preferences are significant at p < 0.01
according to Fisher’s Exact Test)

5 Conclusion

This work investigated the use of glottal model information for ABE. It was observed that the
parameters for optimal WB modeling of the glottal flow signal could not be found using the
investigated optimization techniques and the NB GFD signal. It was possible to use regression
to map the parameters found by optimization to parameters for optimal WB modeling using a
small vowel corpus for training. The proposed algorithm objectively meets or exceeds a state-of-
the-art reference algorithm, but is currently subjectively slightly inferior in direct comparison.
Future work should comprise more detailed investigation of the inconsistencies between the
optimal NB- and WB parameters. Furthermore, future work might investigate machine learning
techniques instead of optimization followed by regression to map the NB signal or extracted
features directly to model parameters for optimal WB modeling. Finally, it would be interesting
if the results in terms of modeling inconsistency and performance observed during this work
also hold for a larger corpus consisting of a more diverse set of utterances.
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