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Abstract: The article summarizes selected results of audio and video signal pro-
cessing in a joint research project on agricultural mission data (HARMONIC) from
our previous publications. We compare the results of audio-processing tasks, based
on single-channel recordings directly at a small unmanned aerial vehicle (UAV,
drone) with the improvements using a lightweight microphone array at the drone,
and post-filtering methods. To demonstrate the practical relevance, we survey
the speech-recognition performance by simulating human speech commands to a
hovering UAV, with limited success due to remaining interference of speech and
ego-noise frequencies, also in the improved setup. The video-processing tasks in-
volve the classification of agricultural textures (e.g. different fields, wood areas,
or paths, in which we achieve an accuracy of 88.7 %) and the detection of typical
objects, such as a land machine, animal or person by convolutional neural networks
(CNN). Utilizing an image-scaling approach for far-distance objects, the mean av-
erage precision in the detection of “small persons” in a large image is improving
up to 5. . . 8 %, compared to the CNN baseline approach in the reference datasets
AgriDrone and VisDrone. Finally, we discuss the potentialities for a combined use
of audio and video data, to enable improved methods for human-drone interaction.

1 Introduction

The civilian and military usage of unmanned aerial vehicles (UAV, drone) e.g. for surveillance,
monitoring in agriculture, or for scientific data collection is continuously rising but challenging
at the same time. The main goal of our joint project “Collaborative strategies of heterogeneous
robot activity at solving agriculture missions controlled via intuitive human-robot interfaces
(HARMONIC)” [1] is the development of an autonomous mobile platform (including ground
and aerial vehicles) for precise agricultural missions as an EU/BMBF-supported collaboration
between five research groups from Russia, Germany, Serbia, and Turkey. The German project
tasks involve additional mission and safety information from the analysis of aerial photo data
and intuitive control functions through gesture or speech interaction. A key benefit of precision
agriculture is a more accurate and sustainable use of fertilizer, herbicide, or seed rates with
respect to local boundary conditions that can also result in higher profitability.

In this overview article, we will first illustrate some challenging aspects in audio and video
processing by selected test data, methods, and results from the HARMONIC project that might
be relevant for an agricultural mission. Because of the strong ego-noise, an ambient-sound or
even speech analysis nearby UAVs is difficult, and the usability in human or livestock environ-
ments is still quite restricted, see also [2]. There is a limited availability of automatic processing
methods for video, audio, and other UAV-based signals, although many sensors are available.
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In the next section, we summarize the audio data capturing and analysis from previous contri-
butions, including test setup, drone and environmental sounds, speech data, and an enhanced
setup to improve the signal-to-noise ratio (SNR). We demonstrate different factors of influence,
and assess selected quality criteria, such as the resulting SNR and the word recognition rate.

The video-related project tasks, from a perspective of mission safety, aim at the detection of
persons or other distinguishable objects in a work area, in which e.g. fertilizer is being spread.
The frame-based image analysis has been therefore focused on the classification of agricultural
textures (e.g. different fields, wood, or paths) and a detection of typical objects, such as land
machines, animals, or persons. One practical issue is the need to detect humans from a longer
distance or high altitude, to enable an appropriate and timely response of the UAV. In several
optimization steps, we analyzed the performance of convolutional neural networks (CNNs)
for image classification and object detection, and we created the reference dataset AgriDrone.
State-of-the-Art CNNs enable high object detection rates for different image data, but only
within their respective training, validation, and test datasets. Recent studies show the limited
generalization ability of CNNs for unknown data, even with only slight image modifications [3].
A typical source of such problems is the varying resolution of the input images and the necessary
scaling to the input-layer size of the network model. While modern cameras can capture high-
resolution images of people, even from a far distance, the practical input-layer size of neural
networks is comparatively small. In previous experiments, we showed that the detection rate
of far-distance objects (e.g. a small person in a high-resolution image) can be increased, which
improves the usability of CNNs in drone tasks [4]. Digital farming also requires camera drones
to inspect fields from above. Texture-classification methods allow, for example, to segment a
recorded region, and to compare it with a digital map for self-localization, to distinguish objects,
or to analyze the plant growth and health status.

In the last section, we discuss a combined use of audio and video information, including
some implications for the acoustic and visual interaction with drones.

2 Experimental methods and data

2.1 Audio data capturing and analysis

2.1.1 Test setup, drone and environmental sounds

The mobile audio recordings at the test drone DJI Mavic Pro [5] were carried out in quiet rural
areas at wind speeds of max. 10 km/h during the five flight maneuvers: hovering, climb, dive,
directional flight, and rotation (with an average sound-pressure level of 98 dB). The sound ex-
amples were captured by an omnidirectional lavalier microphone [6] at different UAV positions
and later enhanced by an 8-microphone array below the drone [7, 8], as shown in Figure 1.
To reduce interference between drone sounds and wanted signals, the microphone array was
mounted between the rotors on the left drone side. For reference, we also captured the sounds
of an affixed drone in an anechoic chamber [9]. In the beginning, we studied characteristic
spectra [6, 9] that are associated with the flying UAV itself, including varying blade passing
frequencies (BPFs), and the resulting masking effects in environmental sounds (e.g. from a
passing car, motorcycle, or a ringing church bell).

2.1.2 Speech data and word recognition

To survey the feasibility of a human-drone interaction via voice [10], we recorded a test corpus
of the seven German command words (Halt, Stopp, Start, Fliege (fly), Eins (one), Zwei (two),
and Drei (three), simulated from a loudspeaker in distances of 0.5 or 1.0 m to the hovering
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Figure 1 – Audio recording system mounted on the test drone from [7]

drone, and resulting in 735 samples. To reduce the UAV-based ego-noise, the samples were
post-processed with different standard algorithms such as notch or a low-pass filtering, and
then fed in random order to the Google Cloud Speech-to-Text API [11], without previous noise
adaptation or training.

2.1.3 Beamforming and steering

In further experiments [7], we surveyed directional effects on the SNR with the enhanced setup.
A loudspeaker at ground played speech commands, and the test drone with the 8-micro array
was hovering at 2 m height directly above the loudspeaker (beam steering with azimuth angle
a = 90�) or at different ground distances to the loudspeaker (a = {30�,60�}). In 80 differ-
ent settings, including beamforming with directivities of D = [0 . . .30] dB, in which D = 0
means omnidirectional characteristics (“bypass”), we analyzed the UAV-masked voice samples
at the hovering drone, but also blank voice signals and UAV sounds as reference. To addition-
ally increase the SNR, post-filtering methods such as adaptive quantile based noise estimation
(AQBNE) [12] have been applied.

2.2 Image data capturing and analysis

In the following, we illustrate two selected tasks from the HARMONIC project in object recog-
nition and image classification, aiming at person detection and texture-based object classifica-
tion with sophisticated convolutional neural networks.

2.2.1 Test setup and image data

For the AgriDrone dataset, 4586 aerial photos have been taken from spring to early winter in
agricultural environments, also containing persons, with the two DJI drones Mavic Pro and
Mavic 2 Enterprise at an image resolution 3840⇥2160 pixels. As a reference, we use the
popular VisDrone dataset [13] from urban and country environments including many objects
like pedestrians, cars or bicycles, which consists of 8629 images, with a publicly available
annotation and resolutions from 480⇥360 up to 2000⇥1500 pixels. Figure 2 visualizes the
variety in appearances of persons in the AgriDrone data. The observation at different scales is
not only a problem in object or person recognition but also, when images need to be segmented
into different regions, for example, based on their textures [14]. Images taken at a low altitude

79



a. b. c.
Figure 2 – Image examples for different scenarios of person detection: a. Persons covering large areas
of the picture, b. Persons covering very small regions of the picture and c. top-down view.

Figure 3 – Block scheme for solving the image-scaling problem from [16]

contain much more details compared to images from high altitudes. Figuratively speaking, in
the first case one can see trees, and in the second one forest only.

2.2.2 Person detection

State-of-the-art CNNs are able to achieve impressive results in object detection. One disadvan-
tage is their high complexity, and the limited input-layer size due to memory constraints. The
popular object detector YoloV3 [15] has a standard input-layer size of 416⇥416 pixels, which
can be adapted in steps of 32. An input image has to be scaled down to the CNN input-layer
size by two scaling factors, which result from the quotient of the original height or width, and
the target height or width. Considering the scaling influence in drone images, persons or other
wanted objects in high-resolution aerial images can be quite small due to the recording distance.
Image scaling shrinks their size even more, and the objects might disappear completely. In gen-
eral, small objects in the input-layer are harder to detect by CNN-based object detectors, as the
number of usable features is low. To solve the image-scaling problem, a novel tile-and-merge
approach was proposed in [16], in which the input image is segmented into n overlapping tiles
that correspond to the size of the YoloV3 input layer. In [4] we investigated the scaling effects
on the object-detection performance in detail.

Figure 3 shows the more sophisticated image-processing pipeline. The YoloV3 network
now outputs a list of bounding boxes for each tile. The information of all lists is combined,
and duplicate detections in overlapping areas are removed, at which the decision is based on
the intersection-over-union (IoU) value, measuring the overlap between two bounding boxes.
A high IoU indicates a duplicate box, while a low value refers to a single detection.
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Figure 4 – Multipath architecture [14]

a. b. c.

d. e. f.

g. h. i.

j. k. l.
Figure 5 – Sample of image patches (64⇥64 pix-
els) for different classes and scales: a...c green, d...f
tree or bush, g/h colza, i/j grain and k/l paved area

2.2.3 Texture classification

The texture analysis is also based on CNNs, as they have been proven to adapt well to textures
in the context of object detection and classification [17]. More specifically, we investigated
shallow CNNs, applied to the classification of different textures in the agricultural context, i.e.,
we analyzed textures that occur in the wild [14].

The scaling problem has been tackled using a multipath CNN architecture that operates on
image patches of size 64⇥64, as shown in Figure 4. Patch-based processing requires fewer im-
age data, because many patches can be extracted from a single image, and it allows a faster CNN
training compared to full-image processing. Figure 5 shows some patch samples containing dif-
ferent textures. The classification involves thirteen basic classes from different seasons: empty
field, green field, maize, grain, colza, harvested field, meadow, trees and bushes (look similar
from above), branches, road, paved area, building, and technique/machinery. The samples were
also extracted from the AgriDrone dataset.

3 Results of audio and image processing

3.1 Sound and speech analysis

The spectral properties of the analyzed drone sounds are mainly associated with the BPFs and
their variations caused by flight maneuvers, e.g. at the beginning of a climb, as already previ-
ously discussed [18]. In omnidirectional micro recordings, relevant environmental sounds (e.g.
approaching car) are widely masked by the UAV ego-noise, and hardly audible/detectable in
the spectrogram due to a very low signal-to-noise ratio, except for some distinctive, e.g. tonal
sounds, such as bell-ringing. By the enhanced beamforming-and-steering setup, the SNR can be
improved by encouraging ⇡ 35 dB at the highest sensitivity towards the speech source (a = 90�,
D = 30 dB), as shown in Figure 6, but even then the interference power still exceeds relevant
parts in a speech band < 3 kHz. The AQBNE-based post-filtering has no significant effect.
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Figure 6 – Power spectra of the speech signal vs. ego-noise from [7] (UAV hovering over signal source)

Table 1 – Recognition rate (RR), rejections (Rej.) and RR* (RR w/o rejections), 343 test samples [6]

Noise reduction SNR Rej. % RR % RR* %
– 0 (100.0) – –

ANR 20 dB 89.8 10.2 100.0
Notch & LP 5 dB 69.4 28.6 93.3

Notch & ANR 25 dB 53.1 32.6 69.6
Notch 3 dB 46.9 51.0 96.2

3.2 Speech recognition

The described SNR enhancement would require an adaptation and retraining of the automatic
speech recognizer (ASR), which is not realized so far. Hence we summarize the indicative,
baseline recognition results from [6] in Table 1. Due to the partly overlapping speech and
UAV noise components, the SNR averages to 0 dB only. A denoising with the listed standard
algorithms shows limited success, presumably related to the dynamic micro-variations in the
BPF components. At a strong noise reduction (SNR improvement of about 20 dB), the rejection
rate of the non-adapted ASR engine is rising to 89.8 %. Even a slight notch-filtering (3 dB SNR
improvement) still causes a rejection rate of 46.9 %. On the positive side, the remaining samples
have a word recognition rate of 96.2 %.

3.3 Scale-tolerant person detection

The segmentation-and-merging approach from [4] has been evaluated in combination with
three varieties of the YoloV3-CNN architecture, and focusing on “very small persons” in high-
resolution drone images from the urban reference dataset VisDrone and our AgriDrone dataset.
The detection performance with YoloV3 varieties is illustrated in Figure 7, especially for small
persons in the left picture a. Using our modified approach (cyan boxes), more persons are
detected correctly, compared to the results of the baseline scaling approach (yellow boxes).
Improvements of up to 8 % mAP50 (mean Average Precision at IoU threshold of 0.5) on the
Visdrone data and 5 % mAP50 on the AgriDrone data were achieved.

3.4 Classification of agricultural textures

The chosen camera-orientation angle was about 90� for top-down view, introducing only slight
perspective distortions. The flight altitude varied between approximately 15 and 50 meters.
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a. b.
Figure 7 – Example detection with YoloV3 for a. VisDrone set and b. AgriDrone set from [4] (magenta:
ground truth; yellow: true-positives w. image scaling; cyan: true-positives w. image segm. and merging)

The image pre-processing comprises a downscale step of factor 0.5 to reduce the influence of
possible compression artifacts, and a segmentation into patches of 64⇥ 64 pixels. The entire
dataset of texture patches can be considered as a very difficult one, mainly for two reasons: (i)
patches from the same class might look quite different (e.g. meadow, technique, paved area),
and (ii) patches from different classes sometimes look similar (e.g. road $ paved area, building
$ technique).

The datasets have been separated into training data (60 %), validation data (20 %), and test
data (20 %). Along with the default settings in the Matlab 2019 Deep Learning Toolbox, the
following hyperparameters have been selected for the training procedure: a mini-batch size of
128, stochastic-gradient-descent optimizer with momentum (SGDM), a learning rate of 0.01,
and shuffling of the input data at the beginning of the training. After multiples of 16 epochs,
the network is applied to the validation dataset. The trained CNN has been applied to the test
dataset and could achieve an accuracy of 88.7 %, in which the accuracy denotes the number of
correct classified patches (after binary decision in favor of the class with the highest regression
score) divided by the total number of analyzed patches in percent. The reported accuracy of
texture classification can be considered as great success, if bearing in mind that the dataset
contains high inter-class similarity and intra-class diversity as discussed above.

The combination of information from different patches could be utilized in further tasks,
for example, in a rough image segmentation.

4 Potentialities of a combined audio and image processing

Considering the illustrated audio-processing results, in particular the low SNR of speech or
other wanted audio signals, additional information e.g. from image processing is of disputable
value. As an example, we can assume that the beamsteering angle of the micro array is con-
trolled by localization data from the described person detector. Even at the highest sensitivity,
directly towards the speech source, the resulting SNR would still be insufficient for a robust
speech recognition, due to the residual interfering ego-noise. Vice versa, we could envisage the
concept of an “acoustic camera” to coarsely detect persons or other, potentially sound-emitting
objects for delimiting relevant image-processing areas. For both example scenarios, the bottle-
neck is currently given by the limited audio-processing performance.

In general, the combination or fusion of multimodal data can be realized on different ab-
straction levels, as e.g. discussed in [19], cf. Figure 8. A low-level fusion would be complex
for the heterogeneous audio and image sensor data in our case, but there are some successful
applications of medium-level fusions (i.e. on feature level), e.g. for audio-visual emotion detec-
tion, e.g. in [20], whereas high-level fusion (on symbol or decision-making level) is appropriate
for many classification tasks, also in heterogeneous data. For a broader application of drone
systems in collaborative settings, a proper estimation of the actions and intentions of the human
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Figure 8 – Different levels of sensor-data fusion from [19]

partner is instantaneously needed. As not all information channels are always available, e.g.
since visual information is occluded or badly illuminated, the audio channel is disturbed due
to wind or dynamic flight maneuvers, or because of sensor failures on both sides, the resulting
fragmented data pose enormous difficulties for classic decision-level fusion approaches [21, 22].
On the other side, a feature-level fusion is also not directly applicable due to the unequal time
resolution in our studied tasks and modalities, see also [23, 24]. Therefore, in-the-wild fusion
approaches have to deal with (temporally) unequally sampled decisions coming from different
sources, with their individual reliability and temporal validity.

A possible solution is the application of Markov fusion networks (MFN) [25], which can
combine decisions from multiple sources with temporal dependencies. Such MFN models have
the advantage of working robustly also on small datasets, while preserving temporal depen-
dencies, but each modality has to be individually weighted according to its occurrence and
reliability of the provided decisions [26]. Assuming a sufficient amount of audio and image
data, one could also consider alternative fusion models in the context of deep learning.

5 Conclusions

Starting from our goals in a joint research project on agricultural missions of autonomous mo-
bile systems, we developed methods for UAV-based audio and video processing that can con-
tribute to the human-drone interaction, precision agriculture and mission safety. We illustrated
the challenges of audio-data capturing by additionally mounted equipment at a flying drone
with a sound pressure level of about 98 dB. In our practical study, neither constructive nor
algorithmic approaches resulted in a sufficient signal-to-noise ratio so far, which allow for a
reliable speech recognition or detection of environmental sounds, although significant signal
improvements were achieved. Therefore, we will further optimize our test setup. Possible solu-
tions are experiments with a more silent drone, and classification methods (including the speech
recognizer) that are trained on UAV-specific noise data.

As commercial drones and their flight stability are widely optimized for video capturing,
we could exploit high-quality image data in our experiments. Challenges for the automatic
image processing are given by the changing details of agricultural textures in varying flight alti-
tudes, far-distance pictures from small but relevant objects or persons, and steadily varying view
angles, compared to the ones in fixed cameras. Utilizing convolutional neural networks and a
modified scaling architecture, we obtained an appropriate level of accuracy in the illustrated,
drone-based texture classification and person detection on different test data.

After all, we discussed a combined use of audio and video data in the context of data-fusion
principles and suggested a fusion of audio and image instances on the level of decision making.
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