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Abstract: Existing pitch tracking algorithms have proven to achieve error rates of
less than 10% when applied to human speech. We take four such algorithms, YIN,
RAPT, PEFAC, and TAPS, adapt them to real-time applications where necessary,
and present improvements as well as a framework for combining them based on
several aspects of their output to improve error rates further. The framework can
be used with arbitrary pitch tracking algorithms.

We compare the adapted algorithms separately as well as their combination in our
framework in terms of pitch tracking accuracy as well as how well they distinguish
voiced and unvoiced signals. Our experiments indicate that PEFAC performs best
when it comes to pitch tracking, but our framework performs best overall.

1 Introduction

Pitch is the “auditory perception of tone” [1]. This also applies to human speech, and methods
to estimate its pitch have been researched for decades. Pitch tracking has a wide range of
applications in different areas, such as communication, phonetics and linguistics, education,
and medicine [2].

Current state-of-the-art pitch tracking algorithms have a less than 10% error rate on clean
speech [3, 4]. While already quite good, it does leave room for improvement. An approach we
follow in this paper is to combine algorithms in an attempt to increase the success rate. Consider
three algorithms and assume for the moment that at most one is wrong at any given time. Then,
going with the majority vote would yield a perfect success rate. This is, of course, an idealized
scenario, but even if we drop our assumption it seems reasonable to expect that a combination
of algorithms will increase the success rate.

Related Work In spite of the number of pitch tracking algorithms proposed in the past, only
a few publications focused on combining existing algorithms. Yeh et al. [S] observed that
different pitch trackers exhibit different types of pitch error. They proposed three approaches
for combining an arbitrary number of pitch tracking algorithms in the context of extracting pitch
from singing. Our approach differs in that it takes more information into account than only each
algorithm’s main pitch estimate which adds flexibility in the calculation.

Evaluations of YIN [6], PEFAC [3], and TAPS [4] are included in the respective papers.
Furthermore, Jouvet and Laprie [7] and Luengo et al. [8] compared pitch tracking algorithms,
including YIN, RAPT, and PEFAC.

Contributions Our main contribution is a real-time approach for combining an arbitrary num-
ber of pitch tracking algorithms. Besides main pitch estimates, it also considers continuity of
estimates and secondary candidates for analysis of (sub-)harmonics. The system is evaluated
on implementations of four existing, but adapted, pitch tracking algorithms.

This paper is based on a bachelor thesis [9] which goes into considerably more detail.
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Outline We start with foundations in Section 2, followed by an overview of the four pitch
tracking algorithms we shall consider in Section 3. Section 4 describes our approach for how to
combine them. All are then evaluated in Section 5. Section 6 concludes the paper.

2 Foundations

An estimation is calculated over a frame, which is a sequence of discrete measures at a given
rate and across a given time interval. In fact, not the pitch is estimated but, more precisely, the
Fundamental Frequency (FO) which is similar most of the time. Algorithms operating in time
domain often compare the similarity of the input signal with itself but shifted by a certain time,
called lag.

The periodic signal in our speech is produced by pulses generated from an opening by the
vocal cords. This is called voiced speech. A sound is called unvoiced if it is instead produced
by constrictions in the vocal tract creating turbulent airflow when air is forced through. The
estimation whether the current frame corresponds to voiced or unvoiced speech is called voiced
decision. The FO of voiced speech can change with every glottal period which is the time for
one cycle of opening and closing the vocal cords.

A pitch tracking algorithm in our framework receives a frame as input and produces a
main candidate, (multiple) secondary candidates, and a voiced decision as output. The main
candidate is the usual estimation of an algorithm, while secondary candidates are expected to
be connected to Fundamental Frequency (FO) as (sub-)harmonics.

3 Four Pitch Tracking Algorithms

This first subsection gives a brief overview of the four pitch tracking algorithms we imple-
mented and highlights the changes we made to them. We then explain our choice of algorithms
in the second subsection.

3.1 The Algorithms

YIN (or Yin and Yang) [6] operates in the time domain and consists of six steps. Instead of
the autocorrelation method (1) the algorithm uses a function that takes the squares of the dif-
ferences (2) and normalizes this value by the mean values for smaller lags (3), an absolute
threshold to reduce octave errors (4), parabolic interpolation for more precise estimates (5), and
a local search routine (6).

If any lag satisfies the threshold of step (4) in the algorithm, our implementation [9] con-
siders the frame as voiced. In this case the signal and the signal shifted by the corresponding
lag correlate well, indicating that the signal is periodic. Secondary candidates for YIN are the
smallest lags satisfying the threshold.

RAPT (or Robust Algorithm for Pitch Tracking) [1] is an algorithm with a focus on robustness.
Similar to YIN, RAPT operates in the time domain, but uses a different correlation function,
namely the Normalized Cross Correlation Function (NCCF). To reduce computational com-
plexity, the NCCF is first computed on a low sample rate before switching to a higher sample
rate only in the vicinity of maxima found by the first pass. Dynamic programming is then used
to select either the best FO candidate or to characterize the frame as unvoiced.

Our implementation follows this two-pass approach, but does not use dynamic program-
ming in order to achieve the real-time constraint. Hereby, the voicing decision uses a threshold
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measuring the periodicity of the signal similar to the implementation for YIN. Again, the sec-
ondary candidates are the smallest lags satisfying the threshold.

PEFAC (or Pitch Estimation Filter with Amplitude Compression) [3] operates in the logarithmic
frequency domain using a matched filter to leverage naturally occurring harmonics in speech.
The input frequency spectrum is normalized as a preprocessing step based on the Long-Term
Average Spectrum of Speech (LTASS) [10].

We deviate from the original algorithm by basing the voiced decision on the ratio between
the maximum filter output value and its average. In addition, we added parabolic interpolation
on the main candidate to increase the accuracy of estimates. We use the frequency correspond-
ing to the highest filter values as secondary candidates.

TAPS (or Temporally Accumulated Peak Spectrum) [4] operates in the frequency domain as
well and utilizes the fact that the fundamental frequency of speech changes much more slowly
than the fundamental frequency of background noise. Therefore local maxima in the spectra
of consecutive frames are accumulated and fed to an Autocorrelation Function (ACF). The
ACEF values are averaged in a small neighborhood and the estimate is calculated by a harmonic
average of the highest maxima.

Our implementation adds a voicing decision based on the relative height of the maxima.
We use frequencies corresponding to the highest local maxima as secondary candidates.

3.2  Why These Particular Algorithms?

When combining algorithms to improve the quality of estimates, it seems reasonable to choose
algorithms based on different approaches. Good performance of the individual algorithms is of
course a prerequisite for their combination to have a low error rate.

RAPT and YIN represent time domain algorithms and are considered as some of the “best
performing” pitch tracking algorithms [11]. Since both are based on a correlation function,
they follow the idea of measuring the similarity of the signal with a delayed version of itself.
TAPS uses that fact that the human pitch and noise differ in their temporal properties. PEFAC,
finally, combines the LTASS and a matched filter on the logarithmic frequency axis to obtain an
estimate which is robust to noise.

Since these algorithms rely on different characteristics we expected that the frames where
an estimate is false differs from algorithm to algorithm. However, the presented concept is not
restricted to these algorithms. RAPT, YIN, TAPS, and PEFAC are presented here as examples
of how to combine pitch tracking algorithms.

4 Combining the Algorithms

We propose a system called Candidates Evaluation (CE) which combines the estimates of mul-
tiple pitch tracking algorithms, here called candidates, in order to improve estimation quality.
CE is based on a reward system, where the frequency with the highest score is chosen as the
combined estimate. It was developed to make use of the individual strengths of each algorithm
and to be very flexible such that algorithms can be added, exchanged, or removed easily. If a
new algorithm is to be introduced, adaptations to the scoring system may improve the overall
accuracy.

The general structure of CE allows for many degrees of freedom. The impact of different
algorithms and rewards can be adapted to the application at hand. New reward strategies can be
added or existing ones be removed, as can algorithms. Being independent from each other, the
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Figure 1 — Distribution of frequency bins with K = 37.5, with candidates drawn as dashed lines. Note
that for the bin distribution without an offset, a maximum of three candidates end up in any given bin.
However, if the bins are arranged with an offset, four candidates are assigned the third bin which seems
reasonable.

candidates can be computed concurrently before CE combines them. By the simplicity of CE,
only a small overhead beyond the runtime of the used algorithms is required.

4.1 Frequency Bins

Our approach is based on deriving scoring measures based upon the underlying pitch tracking
algorithms. Doing so, however, poses a challenge in that settling on a final result is a somewhat
fuzzy problem. First, even if the candidates are close, they might not be exactly equal. Second,
the candidates might be spread out, and possibly even contradicting. Consider, for example,
a situation which presents our scoring system with five candidates: 200 Hz, 300 Hz, 400 Hz,
500 Hz, and 600 Hz. If it is likely for algorithms to produce harmonics of the actual pitch, then
200 Hz seems like a reasonable choice since 400 Hz and 600 Hz are harmonics. However, the
presence of 300 Hz and 500 Hz rather point to 100 Hz. Such ambiguities need to be properly
resolved.

Our solution is based on partitioning a reasonable target frequency range into one sequence
of frequency bins of size K € R, Hz. For human speech, we would expect that range to be
about 50-500 Hz, resulting in the situation shown in Figure 1. Each candidate is then mapped
to the appropriate bin. However, if several candidates flock around the border between two bins,
their would be split even though they are likely to refer to the same frequency. This is why we
introduce another sequence of bins with the same size, but at an offset of K/2—the first bin
thus starts at 50 + K /2 Hz. This causes candidates closely around 50 +nK Hz, n € N, to all
be assigned to the same frequency bin. Of course, the frequency bin size influences how far
candidates can deviate and still be considered to refer to the same fundamental frequency.

4.2 Reward System

The final estimate is based on a reward system where each frequency bin gains or loses points
based on different information retrieved from candidates assigned to them as well as on the
previous estimate. Each bin’s final score is the sum of points thus obtained, with the mean of all
candidates assigned to the highest scoring bin being chosen as the final estimate. This implies
that the size of frequency bins determines how accurate our estimates can be. We will now
describe all of the aspects our rewards are based on.

Primary Candidates Each primary candidate produced by an algorithm earns its bin a constant
reward. The reward does not have to be constant across algorithms, though—algorithms known
to be more reliable might yield higher scores than less reliable algorithms.

(Sub-)Harmonics While for TAPS, the secondary candidates contain harmonics of FO, RAPT,
YIN, and PEFAC often yield subharmonics of FO. This can be used as a reward factor, although
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Figure 2 — Secondary candidates scoring example for a candidate at 216 Hz, interpreted as a subhar-
monic in the upper bins and as a harmonic in the bottom bins. Each plus and minus indicates a bin
gaining and losing points, respectively.

it is not known which (sub-)harmonic the secondary candidate refers to.

An example for the scoring by one secondary candidate for the bins without offset is shown
in Figure 2. For a subharmonic fy,, there exists n € N with nfg,, = FO. The other way around,
for a harmonic f,, there exists n € N with fy,, = nF0. If an algorithm is expected to produce
subharmonics fyp, bins including a frequency f = nfy, gain points and bins including a fre-
quency f = 1/n- fup lose points for any n € N. Gaining and losing points is switched if instead
an algorithm is expected to produce harmonics.

Estimation Continuity Apart from the target frequency range, we have thus far not taken any
other properties of human speech into account. One such property is that the difference in
fundamental frequencies of adjacent glottal periods is either small or exactly one octave [1].
Since most estimation errors are octave errors and sudden octave jumps rarely occur in reality,
we only consider small changes, which we call continuity.

We support continuity by adding a constant to the score of bins in the vicinity of the pre-
viously chosen bin, since these are more likely to house the next fundamental than bins further
away. What “vicinity” means, exactly, depends on the bin size. With 10 Hz bins, two bins
in each direction performed well for detecting fast fundamental frequency changes while still
being robust against octave errors.

Mean-Based Rewards For any given speaker, the deviation from the mean fundamental is
often small. Therefore, mean-based rewarding of bins could be helpful for reduce octave errors,
for example. Since pitch tracking generally is not restricted to a single speaker, though, we
refrained from taking the mean into account.

One example of the mean being harmful could be a conversation between two people one
with a mean fundamental of 70 Hz and one with 210 Hz. The pitch of the second person might
then be interpreted as a harmonic of the first and, therefore, produce false estimates.

In settings where only a single speaker is present, though, including mean-based rewards
may improve results further.

4.3 Voiced Decisions

Besides voiced decisions of the individual algorithms, our combined voiced decision also takes
the previous voiced decision and estimation continuity into account. A voicing score is deter-
mined which, if it exceeds a threshold, results in the frame being considered voiced. Taking the
previous voiced decision into account reduces fluctuations of the voiced state.

In contrast to the continuity of voiced speech, for unvoiced speech or silence the estimates
of neighboring frames are unrelated. Thus, we reduce the voicing score if the current estimate
is not in the vicinity of the previous. In our implementation, each voiced estimate produced by
the underlying algorithms increases the voiced score by one, as does a previous voiced frame.
With four algorithms, a threshold of 3 seemed to work well.
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Figure 3 — Estimation error rates for each algorithm.

5 Evaluation

5.1 Experimental Method

We used the Pitch Tracking Database from Graz University of Technology (PTDB-TUG) [11]
to evaluate pitch estimation quality. The database consists of 4720 recordings from 10 fe-
male and 10 male native English speakers pronouncing the 2342 sentences from the Texas
Instruments/Massachusetts Institute of Technology (TIMIT) corpus. Two of these sentences
are pronounced by each speaker and the other 2340 by one female and one male speaker each,
hence yielding 4720 recordings. The database provides the speech signal, the laryngograph
signal (which measures the contact of vibrating vocal folds), and a reference pitch determined
by RAPT on the laryngograph signal for each utterance. The calculation on the laryngograph
signal is expected to be more precise than for clean speech since the glottal excitation has not
been manipulated by the vocal tract yet at this point.

Our evaluation used only 4430 recordings from this database, since we found 290 of the
reference pitch files to contain unreasonable reference pitch values [9]. Since the estimation
rate of the reference differs from the estimates made by our implementations, the reference
pitch was interpolated linearly and then resampled to match our estimation rates. Unvoiced
frames are indicated by an estimate of zero by the reference. Our interpolation would thus
calculate unreasonable estimates between voiced frames (reference estimate is non-zero) and
unvoiced frames (reference estimate is zero). To reduce the resulting pitch estimation error, the
reference for such frames is set to unvoiced/zero. An estimate was considered correct if it fell
within 5% of the reference pitch, which is similar to previous publications [3].

For each algorithm, we measured the error rates for pitch estimates, voiced estimates, and
both combined. The pitch error only considers the frames that are voiced according to the
reference. The combined error is defined by the number of frames that suffer from at least one
error, divided by the total number of frames.

5.2 Analysis

Figure 3 shows the error rates for each algorithm and our framework. PEFAC performs well in
all three categories. However, RAPT, YIN, and TAPS have a higher pitch estimation error rate
than voiced decision and combined error rate in common. RAPT has the lowest voiced decision
and combined error rates regarding the algorithms, in spite of a higher pitch estimation error
rate compared to PEFAC. TAPS has the highest error rate in every category.

Our framework has overall the lowest error rates for voiced decision and combined. How-
ever, the pitch estimation error is slightly higher than for PEFAC.
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5.3 Discussion

We set out to improve estimates by combining the results of different algorithms, and indeed the
data seem to show that CE does improve the voiced estimation and combined error rates. Pitch
estimation is more precisely estimated by PEFAC, though. This might be caused by RAPT,
YIN, and TAPS having up to twice the error rate of PEFAC, which degrades the quality of the
combined estimations. Put another way, however, CE improves the accuracy of three out of four
algorithms significantly.

The configuration of the base algorithms whose results feed into CE has to be carefully
designed to suit the application. The flexibility of CE allows for arbitrary compositions of input
algorithms. One could even use certain algorithms for voicing detection or pitch tracking only,
by setting the corresponding weights of the others to zero.

6 Conclusion

We described CE, an algorithm that combines the results of different pitch tracking algorithms
to improve accuracy. It takes the continuity of estimates, harmonics and subharmonics, as well
as main and secondary candidates into account and uses a scoring system to arrive at a combined
result. It is flexible in that it can be used with an arbitrary selection of pitch tracking algorithms.

The evaluation showed an overall solid accuracy of CE. To improve on the result of pitch
tracking accuracy, different input algorithms need to be considered that all have similar accu-
racy, in order to prevent one algorithm from degrading results too much. In our view, CE has the
potential to further improve estimates for arbitrary algorithms that already perform reasonably
well.
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