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Abstract: The development of custom skills for the popular Voice Assistants (VAs)
of Google and Amazon is usually done in their corresponding eco system for the
specific VA. However, the expectations to a voice assistant are very high: natural
language understanding, open domain, task oriented, and smart dialogs resulting
in correct and context dependent responses. The eco system of the VAs is often
not capable to handle such natural dialogs. It is necessary to code simple dialogs
running in the backend of the voice assistant, to learn dialogs based on a huge set
of domain data, or to design dialogs based on rules. In our approach we design a
knowledge graph based on objects and their relations. This knowledge represents
the domain, the dialogs, language resources, and rules. A rule engine operates on
this dynamic knowledge base and calculates the next dialog step. This approach is
voice assistant independent and can be combined with the top on-market VAs, like
Alexa or Google Assistant. In this paper we present our web-based Voice Assistant
Dialog Modeling Service (VADiMoS) which enables such ontology based dialog
modeling, testing, simulation, and deployment to the VA. VADiMoS abstracts the
complex definition of dialog rules which are part of our ontology by providing a
template-based rule editor. This enables the interactive and test-driven creation of
human machine dialogs.

1 Introduction

Voice assistants (VAs) become more and more present in our lives. TV, smart speakers, and the
complete home automation can be easily controlled via voice. We expect that popular VAs like
Alexa and Google will also replace more and more the generation of inflexible dialog systems
in our cars, where only few dedicated commands lead to success. We want to access car related
functions or travel related information with natural speech and don’t want to to without all the
voice interaction we are used to have at home.

The development of custom dialogs, actions, or skills for the popular VAs is usually done in
their corresponding eco system for the specific VA. We described in [1] an ontology-based voice
dialog framework for in-vehicle infotainment. The system was specified by a declarative model
comprising the dialog definition, dialog management logic, and domain knowledge, which are
backed by an RDFS ontology. The approach simplifies coping with dialog phenomena such as
anaphora or implicit confirmation, that can be addressed without writing code.

In this paper we present our web-based Voice Assistant Dialog Modeling Service (VADi-
MoS) which enables VA independent modeling, testing, simulation of dialogs, and deployment
to the top on-market VAs, like Alexa or Google Assistant. The dialog management approach
uses an ontology (e.g., [2]) to specify customized dialogs between user and system and to de-
scribe the relevant domain knowledge. The dialog manager is integrated and modeled as a part
of the ontology which enables the customization of the dialog management itself based on rules
(inspired by [3]). By applying complex dialog rules, the system enhances the built-in dialog
capabilities of common VAs. The runtime framework allows to integrate dynamic knowledge
from external sources to enrich the user experience. In an automotive scenario the dialog sys-
tem would e.g. access data from the car (e.g. the fuel level) and from the cloud (e.g. open
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gas stations around) and combine this knowledge with dialog history and user context to enable
smart human machine dialogs.

VADiMoS abstracts the complex definition of dialog rules by providing a template-based
rule editor. This enables the interactive and test-driven creation of dialog rules. The modeler
is supported by a guided workflow. Dialogs can be simulated within VADiMoS or directly
uploaded to the backend of the voice assistant. The car will connect to the VA and the VA can
be configured to communicate with the dialog backend [1]. Alternatively, the runtime modules
can be downloaded to supplement also on-board voice engines.

Many automotive OEMs have their own toolchain to implement voice dialogs for state-of-
the-art onboard ASR and TTS engines and to connect to the applications like media, telephone,
or navigation. To enable off-board dialog development, to extend popular VAs with brand
specific dialogs, to be voice assistant independent, and to design on-board dialogs in one tool, a
web based tooling will help the OEMs to make the transition easy and comfortable.

In the following section we present our use case. Section 3 will explain how this use case is
implemented using our ontology based approach. Section 4 describes how this can be achieved
in a comfortable and interactive way using VADiMoS. Finally we will conclude and compare
our approach with other tools.

2 Dialog Scenario

In our previous publication we explained complex use cases which require reasoning and anaphora
resolution ("how much is it?", [1]). In this paper we focus on a single use case where we aug-
ment our knowledge graph with dynamic data that is used for response generation and for
further dialog steps. We will showcase how it can be modeled in our ontology and on top we
will explain how it is simplified in VADiMoS.

User: “Find open shops nearby?”
System: “REWE is open”
User: “Drive me there.”

A more complex version of this use case would contain disambiguation:
User: “Find open shops nearby?”

System: “There is an Aldi and a Lidl within 500 meters”

User: “Drive me to Lidl.”

This use case comes along with the following challenges: (1) The dialog system in the cloud
needs to know the position of the car, (2) supermarkets nearby are dynamic data and need to
be added to the knowledge base dynamically on demand, and (3) a list of dynamic data could
be part of the response prompt. Finally, (4) the system needs to resolve the anaphora “there”
or the user is asked to disambiguate from the list of dynamic data that has been added to the
recognizer’s vocabulary.

3 Dialog Approach

In this paper we use a declarative approach to define dialogs as described in [2]. Thus, no
coding is required and models are portable and can be re-used independent of the underlying
voice assistants. Dialogs and the dialog management are rule based and the rules itself are
part of the ontology. The dialogs can run as backend to several voice assistants. Our run-time
system contains a dispatcher unit that translates dialog actions into corresponding calls for the
assistant. For instance, Alexa provides dialog directives for slot elicitation or confirmation to
be used from the Lambda function'.

'https://developer.amazon.com/en-US/docs/alexa/custom-skills/dialog-interface-reference.html#directives
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{ "@type": "Rule", { "@type": "Rule",

"condition": [{ "condition": [{
"@type": "DialogState", "Qtype": "ExternalResult",
"currentIntent": "findShops", "data": {
"isComplete": true "@type": "HerePlacesNearby",
3. { "geoStores": {
"@id": "CurrentCarPosition", "name": "?name",
"longitude": "7carLongitude", "isOpen": #true,
"latitude": "7carLatitude" "latitude": "7latitude",
} "longitude": "?longitude"
3, 3
"action": [{ H,
"Qtype": "HerePlacesQuery", "action": [{
"longitude": "{carLongitude}", "Qtype": "Say",
"latitude": "{carLatitudel}", "utterance":'"{name[n<2]} is open"
"radius": "1000", }.{
"poiCategory": "Shopping", "@type": "Say",
} "utterance":"{name[n>1;0:n-2]}
1} and {name[n-1]} are open"
},{

"@type": "UpdateCarSettings",
"listItems": {
"name": "destination",
"value": "({latitude}, {longitude})"
13

Figure 1 — Rules to handle the request “Find open shops nearby”: The left rule checks the currentintent
and triggers a cloud service request. The car location is read into variables, e.g. ?carLongitude, whereas
{carLongitude} is a placeholder for the retrieved value. The right rule checks for the found places and
triggers the Say response.

3.1 Ontology

The dialog agent’s knowledge and behavior are defined by the system’s ontology, a collection of
dialog-relevant classes, instances, and their semantic relations. The static part of the ontology
is defined by the agent’s modeler. It consists of the dialog manager, the dialog model and the
domain model. The dialog manager defines the structures and rules necessary to determine
the “next” dialog move. The dialog model contains the agent-specific language resources such
as prompts or sample sentences for speech output and input, as well as dialog-constituting
elements like user intents and slots 2. Finally, the domain model contains classes and objects
for knowledge representation and reasoning. The dynamic part of the ontology consists of
objects which are added to, removed from, or modified in the knowledge base at run-time.

Fig. 1 shows a rule that is triggered after uttering “Find open shops nearby”. It checks the
existence of the recognized intent findShops in the knowledge base and triggers an action. The
second rule checks if dynamic knowledge has been created describing shops nearby and if at
least one of the shops is open. Dependent on the number of resulting shops it triggers one of
the say actions, e.g. “REWE is open”.

Our ontology format is based on RDF Schema. We decided on using a JSON syntax similar
to JSON-LD, because JSON is widely-used in the developer community, easy to understand,
and less verbose than XML. A further advantage of the JSON-LD-inspired syntax is the object-
centric rather than triple-centric focus [4]. It makes it easier to generalize the underlying RDF
knowledge model towards a more object-oriented approach. This enables the dialog designer to
abstract or derive any class within the ontology to simplify modeling of standard behavior. Our
web interface enables the usage of these abstract classes.

“Intents typically relate to a function a user wants the system to execute, for instance, initiating a route guidance.
Intent classes have properties, called slots, which can be regarded as the parameters of the function an intent
represents.
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{ "etype": "Rule", "@type": "ExternalResult",

"condition": [{ "data": {

"@type": "DialogState", "@type": "HerePlacesNearby",
"currentIntent": "findShops", "position": {
"isComplete": true "longitude": "{carLongitudel}",

}.{ "latitude": "{carLatitude}",
"@id": "CurrentCarPosition", "radius": "1000"
"longitude": "7carLongitude", }
"latitude": "7carLatitude" "geoStores": {

}, { "name": "7name",

"isOpen": #true,
3]

Figure 2 — Rule condition to combine both rules from Fig. 1. The cloud service request to retrieve the
geoStores is opaquely triggered based on the position.

3.2 Rule Engine

The dialog agent’s “business logic” is modeled with rules. Each rule can be regarded as a
condition-action pair. A condition is a set of objects (possibly including placeholders) that must
match objects in the knowledge base. The rule’s action is executed when all objects match.
Rule handling and action execution are performed by our rule engine. It implements a standard
forward-chaining production system approach as, for instance, described in [5].

We treat rules the same as other objects in the system as they are also part of the ontology.
In particular, property inheritance is also applicable to them. That way, it is possible to create
an abstract rule with conditions and actions passed on to derived rule classes. Derivatives may
specialize the base rule by adding further conditions and/or actions. This principle is used to
avoid repetitions and supports keeping the rule set concise.

3.3 Virtual Knowledge Base

One key factor for convincing automotive dialog systems is that all relevant information is
available in a common format. Our system architecture abstracts from the technology used to
access a knowledge source. There is an adapter unit for each knowledge source and a central KB
manager unit obfuscating whether information comes from the internal knowledge base or some
external resource. The dialog modeler does not have to be aware of the information sources.
When rules are evaluated at system run-time, knowledge adapters are asked whether they are
able to retrieve matching objects for (parts of) the rule condition and/or action. Partial results
are joined by the managing unit. This will simplify our example from Fig. 1 by combining both
rules into one extended condition part, see Fig. 2.

The first part of the rule condition checks for a certain dialog state, while another part
requires a list of shops. The dialog state is checked in the local knowledge base, while the shop
objects are opaquely forwarded to a web service. Changing the respective rule in the dialog
model is not required, even if the web service is replaced by another service or if shops are
resolved internally. What we gain is a portable and extensible dialog model.

4 VADiMoS

The previous sections explained the foundations of our tooling. Our approach provides a huge
flexibility and enables the definition of complex dialogs and the usage of external knowledge
sources using a JSON-LD inspired definition. With the ongoing development of further intents
and the corresponding resource definitions in multiple languages it is hard to keep the overview
about the complete project structure. To improve the definitions and ease the handling of the
project structure and the dialog rules we created the browser based Voice Assistant Dialog
Modeling Service (VADiMoS).
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VADiMos ™
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UpdateCarsettings: current language=fr-FR

FinishDialogSession

Figure 3 — Simulation of a dialog act in VADiMoS
4.1 Project Management, Testing and Simulation

VADiMoS includes a project manager to maintain multiple projects of an authorized user. It is
possible to export single projects to store them in a local version control system. The deploy-
ment to the cloud engine and the safe storage of the necessary credentials are managed in an
own upload page. It is still possible to download the resulting JSON-LD project structure and
upload it manually with the command line tool described in [1]. The command line approach
requires the local installation of additional tooling for the common voice assistants. With the
web based VADiMoS approach such installation is no longer necessary.

The command line approach already supported the execution of testsuites. With the web
based approach VADiMoS introduces a test-driven way to define the testcases before creation
of intents and other dialog resources. All components are using the same runtime which is also
executed online. This approach enables to test all required dialog acts before uploading to the
specific voice assistant eco system. The results of a test run are visualized in a table including
the executed testsuites, the corresponding testcases and the corresponding test duration.

Another way of exploring the current dialog capabilities of a project is to run the simulation.
The simulation uses the runtime to execute dialog acts on intent and slot basis. Fig. 3 shows the
simulation page. The simulation request used for the dialog act is defined on the left side. The
user selects the current language, an intent and could configure optional slot values for the intent
and user data items, for example the current position of the car. The simulation button on the
right bottom side starts the simulation. The simulation console shows the incoming dialog act
request from the dispatcher connected to the voice assistant and the dialog action’s answer of
our runtime. It is possible to simulate single as well as multiple dialog turns including slot
elicitation and other dialog actions for example the update of car settings or the car destination.

The usage of external services e.g. to search for open shops is possible by adding plugins
and the required credentials in the plugin manager. The plugins provide additional templates
and definitions for the domain model. The activated plugins interact with the virtual knowledge
base as described in section 3.3.

4.2 Editors

The dialog model and the domain model are defined using dedicated editors. VADiMoS pro-
vides an invocation editor, language editor, user data editor, dialog resource editor, intent editor,
and a rule editor.

The languages of a project are defined during the project setup. The language editor sup-
ports to add or remove languages of a project. The invocation editor is used to define the
invocation phrases for each language to activate an action or skill. It ensures the consistency of
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the project by requiring the definition of an invocation phrase for each configured language. It
is not possible to add a single invocation phrase without translations into the other languages.
Intents, dialog resources and user data are grouped in domains.

The user data editor is used to define domain model objects and instances which are ex-
changed with external plugins or the device (car) connected directly to the runtime or via the
voice assistant. The intent editor supports the creation of intents and the definition of slot names
as well as the corresponding slot types and values for the domain model. The resource editor
is used to create the language specific dialog resources. It helps to create the intent invocation
phrases, dialog responses, slot elicitation prompts and slot elicitation responses. The consis-
tency of the resources in multiple languages is ensured by using the same restrictions as the
invocation editor.

4.3 Modeling Rules

With the help of the rule editor the modeler is able to create the dialog logic used to power
the rule engine described in section 3.2. A visual node editor can be opened for each intent.
Multiple nodes are interactively connected to create one or multiple dialog rules for an intent.
The node editor is organized in node categories. It supports input nodes, filter nodes, condition
nodes, and action nodes created from abstract rule templates which are defined in the static part
of the ontology mainly in the dialog manager definition. Plugins are providing templates which
introduce and add additional nodes to the node categories. The input nodes category contains
for example an intent node, slot node, and an user data node. The condition nodes correspond
to the rule templates, for example to check for an intent with a specific name and trigger the
response action. A basic workflow could be described as the following: The modeler creates an
input node, e.g. Intent, and connects it to a condition node. The condition is requires an intent
node as input and an action node, e.g. Say, as output . The condition checks for example for a
specific intent name. A Say node is connected to the condition as an output action. It is used
to configure the dialog resource needed for the response prompt. Plugins use a common plugin
interface in our ontology. The nodes which are added by a plugin are connected by offering an
ExternalAction input or an ExternalResult output. The results of a plugin can be filtered using
an FilterExternalResult node from the filter node category. To support the modeler not require
to remember certain user data, slots and other dialog resources, the editor offers the possible
values and objects which could be used for the specific nodes.

The use case which we described in section 2 and the rule definition which we showed in
Fig. 1 is modeled in the rule editor and shown in Fig. 4. The first rule on the top is checks for
the intent name and triggers an external action to search for the open shops. The query action
is described by the plugin template interface. The results of the query can be limited and the
radius for the search can be specified. The query uses the user data to execute the action using
the current car position. If the query action is finished an ExternalResult is received and another
rule is used to filter the results of the plugin. All objects contained in the ExternalResult are
automatically displayed and accessible in the filter as soon as we connect the filter with the
ExternalResult. In our case the filter is restricting the result to all open stores and transfers the
filtered result to the condition node. The condition node is a generic node which is dynamically
receiving the domain objects it might check and use for updating certain car user data. In
this example the condition node is resolving the name of the shop, the destination latitude and
longitude, and uses them for the response Say action and for the update of the car destination
with the UpdateCarSettings actions.

4.4 Visualization of the Ontology

The ontology visualization could be used to obtain knowledge of specific domain objects which
are available in the project. The filter node in Fig. 4 shows a list of geoStore objects contained
in the ExternalResult. We could search for the term “Geo” in the search field of the ontology
visualizer, shown in Fig. 5, to gather more information about this ontology object and its class
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Figure 4 — findShop intent modeled in the VADiMoS rule editor

structure. geoStore is of type PointOfInterest which has a member GeoCoordinates. GeoCoor-
dinates has properties for the position, in our case the position of the car. The interactive explo-
ration of the ontology graph enables the lookup of complex ontology domain objects which are
for example derived from multiple sub classes. The visualization supports the creation of rules
and finally gives a deep look inside of the specified ontology.

5 Conclusion and Outlook

Most of the common voice assistant eco systems require to program the handling of complex
dialogs manually by writing source code or provide a rather simple way of dialog handling and
the dialog management is used from the eco system as a black box. In our approach we use a
common ontology which enables the exchange of information in a generic way. The description
of the dialog management is part of the ontology, the test-driven and interactive editing and the
visualization of the complex underlying ontology enables the creation of complex and satisfying
dialogs for users. Our approach is supporting multiple voice assistants and is also not limited
to the cloud. In the future we want to add support to import ontologies specified by schema.org
[6].

Another focus of our future features is neuronal network based dialog management. The
RASA framework for example offers different ways to specify or drive dialog management. It
is possible to train neuronal networks to produce probabilities which dialog action should be
taken (stories?) or to specify custom rules*. We would like to explore the combination of the
rule based approach together with a neuronal network based dialog management. The runtime
engine of our system is not only usable for the cloud based voice assistants. With the release
of the Alexa Custom Assistant [7] and the Local Voice Control extension for the Alexa Auto
SDK [8] we expect further possibilities to use our approach even in the local embedded device
(car). The integration of Alexa into the car is done using the Alexa Auto SDK. To support
the integration of cloud and local assistants we use the EB Voice Assistant Broker which also
supports the communication with our on-device or cloud runtime on the embedded device. It
can act as a supervisor of multiple voice assistants and provides a common interface to HMI
and the applications.

3https://rasa.com/docs/rasa/stories
“https://rasa.com/docs/rasa/rules
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Figure 5 — Visualization of classes related to search term “Geo” defined in the ontology
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