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Abstract: This paper describes speech emotion recognition as an image classifi-
cation problem using pseudo-labelling techniques, in which there is an availability
of only a handful of labelled samples. Low-level acoustic features like log spec-
trograms and mel spectrograms, extracted from audio files, classified as different
emotions were fed as RGB images to Convolutional Neural Networks (CNNs) to
train the classification algorithms on. While CNNs have achieved state-of-the-art
performances for image classification tasks, they however thrive on a lot of labelled
data. This paper applies transfer learning by using a CNN pre-trained on a huge
corpus of labelled image data, learning the distinct features on a handful of avail-
able labelled spoken data, and utilising this knowledge in iteratively generating
machine-confident pseudo-labels for unlabelled acoustic data. Comparisons were
made by evaluating a neural network trained using full-supervision, and that us-
ing semi-supervision with a combination of labelled and pseudo-labelled data. All
the experiments were implemented on nine commonly used benchmark corpora,
allowing also comparison to already published results.

1 Introduction

Speech emotion recognition (SER) is of utmost importance for human-computer interaction
(HCI). While sufficient research has been conducted for tasks related to automatic speech recog-
nition, the related SER remains still a work in progress. Speech emotions reflect unique char-
acteristics of human speech, conveying additional information besides the content, varying in
small time scales (cf. discussion in [1], p. 12 ff.). Tracking this information in real-time could
lead to better performances of HCI applications. This paper tackles the issue as an image clas-
sification problem, in which acoustic features like log spectrograms and mel spectrograms are
extracted from raw audio files, annotated in different emotions. These spectrograms are fed to
a fine-tuned AlexNet architecture that has been pre-trained on a huge corpus of image data for
object classification tasks.

Deep learning architectures have achieved state-of-the-art performances across tasks like
object detection, speech-to-text conversion, semantic segmentation, etc. However, training such
networks requires usually huge corpora of labelled data. Annotation, or the process of manually
labelling data is a cumbersome process and requires human expertise. However, this comes
with limitations in the form of fatigue, concentration lapses, etc. This paper implement semi-
supervised techniques, where only a handful of ground-truth labelled data is available, while
most of the data is unlabelled (the influence of unlabelled data is discussed in [2]), to overcome
the aforementioned drawbacks. During the initial phase, the neural networks are trained only
on the ground-truth labelled data, while pseudo-labels are generated for the unlabelled data
based on the knowledge gained from training. A confidence threshold is set to classify the
newly generated labels as confident pseudo-labels. During further iterations, these networks are
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re-trained using a combination of ground-truth and machine-labelled confident pseudo labels,
generating updated/newer pseudo-labels at the end of each iteration. This is done to alleviate
the manual process of labelling data.

All the experiments in this paper were implemented on nine benchmark datasets that are
popular for SER (cf. Sec. 3), being conducted gender and speaker independent based on a five-
fold cross-validation strategy. Also, this research compares the performances of the neural
networks when all data was labelled (full-supervision) and when only a handful of data were
labelled across all classes (semi-supervision).

2 Related Work

SER is a matter of research for roughly two decades, resulting in various investigations and
overviews (cf. for an brief overview e.g. [1, 3, 4, 5]). Thus, we kindly focus of those works
being highly related to our approach.

A good number of studies on SER involve Hidden Markov Models (HMM) to classify
speech emotions based on extracted features like the short time log frequency power coefficients
(LFPC), linear prediction Cepstral coefficients (LPCC), and the mel-frequency Cepstral coeffi-
cients (MFCC) (cf. [6, 7]). [8] use hybrid Deep Neural Network - HMMs(DNN-HMM) with
restricted Boltzmann Machines (RBMs) based on unsupervised pre-training, and DNN-HMMs
with discriminative pre-training, comparing their performances with Gaussian mixture model
based HMMs (GMM-HMMs). Further, they apply Shallow Neural Network - HMMs with
two layers as well as Multi-layer Perceptrons combined with HMMs (MLP-HMMs), proving
that the optimal number of hidden layers and hidden-layer units could improve the recognition
accuracy of the DNN-HMMs.

Additionally, various studies have SVMs as a classifier for SER (cf. e.g. [9, 10, 11, 12]).
[13] use extracted features and performs a comparison with SVM kernels like linear, polyno-
mial, quadratic, and RBF ones. [14] apply features like statistics of pitch, energy, and MFCCs
to train an SVM classifier with linear and RBF kernels using a binary tree, one vs one, and one
vs rest classification strategies. Here, they implemented their experiments using a combination
of different features in a gender dependent and gender independent setup.

Also SER was implemented as an image classification task (cf. e.g. [15, 16, 17]). In [16]
transfer learning is used by feeding spectrograms extracted from raw audio files as RGB images
to train a fine-tuned AlexNet classifier and a hybrid AlexNet-SVM classifier. [17] use acoustic
characteristics based on extracted across mel, log, linear, and ERB scales as RGB images, and
perform a scale-wise and channel-wise comparison of classification of emotions.

3 Corpora

In our experiments, we relied on the nine well-known benchmark corpora used in the com-
munity of affect recognition from speech. In the following, the nine corpora will be briefly
introduced based on the presentation in [18].

The Airplane Behaviour Corpus (ABC) (cf. [19]) is intended for applications and investi-
gations related to public transport surveillance. A collection of five moods, namely aggressive,
cheerful, intoxicated, nervous, neutral, and tired, were induced using predefined scripts. These
guide the subjects through a storyline. Eight speakers, being balanced in sex, took part in the
data collection. The corpus contains overall 431 samples.

The Audiovisual Interest Corpus (AVIC) (cf. [20]) is focused to interest samples being
uttered spontaneously. This results from the scenario setting being related to commercials. In
particular, a product presenter (experimentor) leads each of the 21 subjects (ten female) through
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an English commercial presentation. The level of interest is annotated for every sub-speaker
turn on a three point scale (loi1 to loi3).

The Danish Emotional Speech (DES) (cf. [21]) data set contains speech samples of acted
emotions, namely anger, happiness, neutral, sadness, and surprise. All recording were con-
ducted in Danish, comprising full sentences, words, and chunks. These are expressed by four
professional actors (two females). After data collection, each utterance was judged according
to the aforementioned emotion categories.

The Berlin Emotional Speech Database (emoDB) (cf. [22]) is a studio recorded corpus ap-
plying an anechoic chamber to provide clear speech in high quality. The ten professional actors,
being balanced in sex, utter ten German sentences with emotionally neutral content. emoDB
provides speech samples in seven emotional categories, namely anger, boredom, disgust, fear,
joy, neutral, and sadness. In total, 494 phrases were selected based on experts’ decision in a
perception test (cf. [22] for details).

The eNTERFACE (cf. [23]) corpus comprises samples from 42 subjects (eight female) from
14 nations providing speech recordings of pre-defined spoken content in English (this includes
dialects and accents). The data collection is conducted in an office environment. The 1 277
emotional instances represent six induced emotions, namely anger, disgust, fear, joy, sadness,
and surprise. Although the emotional material is acted and in categories similar to emoDB, the
quality of affective content spans a much broader variety than in emoDB.

The Belfast Sensitive Artificial Listener (SAL) (cf. [24]) corpus provides longer samples of
25 audio-visual recordings from four speakers (two female) who interact with a virtual agent.
The recording scenario is designed to let the participants work through a continuous space of
emotional states in a natural interaction. In our experiments, a clustering of the continuous
space was used as provided by [3]. This results in a mapping of the original arousal-valence
space into four quadrants (q1 to q4).

The SmartKom (cf. [25]) is multi-modal corpus providing spontaneous speech. The recorded
utterances are labelled in seven broader emotion categories, namely neutral, joy, anger, helpless-
ness, pondering, surprise, and unidentifiable in German and English. The scenario is related to
in interaction with a technical assistant realised in a Wizard-of-Oz setting. In our experiments,
we used the German part containing 3 823 samples.

The Speech Under Simulated and Actual Stress (SUSAS) (cf. [26]) data set comprises both,
spontaneous and acted emotional samples. The recordings are afflicted partly with field noise.
In our experiments, We selected the subset providing 3 593 actual stress speech samples which
present four different situations, namely neutral, medium stress, high stress, and screaming. In
total seven participants (three female) are recorded in roller coaster and free fall stress situations.

The Vera-Am-Mittag (VAM) (cf. [27]) corpus provides a collection of audio-visual record-
ings being selected from a unscripted German TV talk show called “Vera am Mittag”. The
investigated subset includes 946 utterances from 47 participants. The affective labelling on ut-
terance level is based on a discrete five point scale for each of the three dimensions arousal,
valence, and dominance. For our experiment, we again applied a clustering related to SAL
using four quadrants q1 to q4 (cf. [3]).

4 Experimental Setup

This section explains the data pre-processing steps followed by the model and training settings.
The parameters had to be adjusted based on the sampling rate for each dataset.
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4.1 Data Preprocessing

The raw data, available in WAV format, was passed through a voice activity detector, selecting
only the voiced segments. Based on the implementations in [16], a Hamming window with a
frame size of 25ms, hop size of 12.5ms, and 64 mels per frame were applied to these segments.
Further, these were chunked into blocks of one second each, with an overlap of 10ms between
two consecutive blocks. To further increase the availability of training material, spectrogram
images were extracted for 3 different levels of maximum frequency : 7 000 Hz, 7 500 Hz, and
8 000 Hz, which was in line with the implementations in [28]. The corpora-wise break-up of
the data available for training and validation are shown in Table 1.

Table 1 – No. of Mel/Log spectrogram images generated per corpus (eNT . . . eNTERFACE).
Data ABC AVIC DES emoDB eNT SAL SmartKom SUSAS VAM

No. of
Images 6 612 19 440 5 004 3 519 6 099 12 177 15 402 6 285 5 961

4.2 Model Architecture and Training

All the experiments were implemented using an AlexNet architecture that was pre-trained on
a huge corpus of ImageNet data (cf. [29]). The chosen architecture comprised of five convo-
lutional blocks, followed by two fully-connected layers. All the experiments were conducted
with images of dimension 224⇥224⇥3. The penultimate fully-connected layer was followed
by a dropout layer. The number of neurons in the final fully-connected layer varied based on
the number of classes available per dataset (cf. Sec. 3), which was followed by a softmax layer
to predict the probability of each class identified.

Considering the imbalance across labels in all the datasets, the models were trained to
reduce the weighted categorical cross-entropy loss between each sample and the correspond-
ing labels, in which data with lesser availability were assigned higher weights and vice versa.
The networks were optimized using the Adam-based stochastic gradient descent with an initial
learning rate of 1e�2. This led to a reduction by a factor of 0.1 upon it reaching a plateau in the
validation accuracy for a patience of 5 epochs. The cutoff was reached with the lowest learning
rate of 1e�5. The network training was stopped using an early-stopping mechanism by virtue
of it, reaching a plateau in the validation accuracy with a patience of 10 epochs.

4.3 Training Strategies

Two different training strategies were implemented for all corpora:

1. Full Supervision: All the labelled data available was used tor training the neural network.
Using the five-fold cross-validation strategy, five different combinations of training, vali-
dation, and test sets were created for each dataset, for each extracted feature.

2. Semi Supervision: Only 20% and 30% of all classes across all training data were consid-
ered labelled, while the rest were considered unlabelled. For each dataset, five different
combinations of labelled, unlabelled, and test sets were created.

The test sets created for semi-supervision contained the same samples across each fold for
semi-supervision and full-supervision, allowing a direct comparison of the performances.
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4.4 Pseudo-Labelling Process

To initiate the pseudo-labelling process, the neural networks were initially trained on the hand-
ful of data which were classified as labelled. Pseudo-labels were predicted by the trained model
for those samples marked as unlabelled. A confidence threshold of 99% was set to classify the
newly predicted labels as confident pseudo-labels. This material was used to re-train the models
from the second iteration, in combination with the available ground-truth labels.
At the end of each iteration, the the pseudo-labels were re-calculated for all the unlabelled data,
while the model performances were evaluated on the hold-out test set. This process was re-
peated for a total of three iterations, since beyond this, it was observed during the experiments
that there was a plateau in the overall performance of the models on the test set. Model per-
formances were compared at the end of the first and the third iteration to check the impact of
additional pseudo-labels for classifying speech emotion.

5 Results

The implementations were, inspired by [16] which use an AlexNet architecture, on spectro-
gram images extracted in the log scale (cf. Sec. 4.1) for voiced as well as non-voiced (i.e. those
containing silence/pauses; these were removed in later experiments since silent segments could
deteriorate the classification performances) segments. Finally, we checked the impact of retain-
ing only voiced segments in the performance of neural networks in classifying speech emotion.

Table 2 compares the performances of the models trained under full-supervision, while
Table 3 compares those trained under semi-supervision with only 30% of each class considered
as labelled during the training process. Our experimental results were compared against the
baseline, applying an AlexNet architecture that was pre-trained on the ImageNet dataset and
tested directly on the corpora material, respectively, using voiced and non-voiced segments
extracted as log scale spectrogram images.

Table 2 – Unweighted F1-Scores using full supervision, comparing the baseline on log scale to our
results (eNT . . . eNTERFACE).

Data ABC AVIC DES emoDB eNT SAL SmartKom SUSAS VAM

baseline 0.91 0.89 0.93 0.96 0.81 0.78 0.90 0.96 0.86

log scale 0.92 0.94 0.94 0.94 0.89 0.92 0.90 0.97 0.91

mel scale 0.92 0.91 0.92 0.92 0.87 0.89 0.87 0.96 0.45

Table 3 – Unweighted F1-Scores at the end of the first and the third iteration using semi supervision,
with only 30% of each class labelled, comparing the baseline on log scale to our results

.

Dataset baseline log mel
Iteration 1 Iteration 3 Iteration 1 Iteration 3 Iteration 1 Iteration 3

ABC 0.62 0.63 0.66 0.69 0.69 0.67
AVIC 0.67 0.72 0.74 0.77 0.69 0.71
DES 0.67 0.72 0.63 0.66 0.64 0.67

EMODB 0.77 0.80 0.70 0.72 0.66 0.72
eNTERFACE 0.56 0.60 0.56 0.62 0.53 0.59

SAL 0.42 0.61 0.57 0.62 0.55 0.61
SMARTKOM 0.52 0.58 0.51 0.57 0.49 0.53

SUSAS 0.81 0.85 0.80 0.86 0.83 0.83
VAM 0.55 0.61 0.58 0.63 0.37 0.60
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From Table 2, models trained under full-supervision under the log scale and with the reten-
tion of only voiced segments tended to outperform the baseline and the mel scale (introducing
a specific auditory model, influencing the extracted images) implementation across all corpora.

For those models trained under semi-supervision (cf. Table 3), our approach could not beat
the baseline for DES and emoDB after the third iteration. Again, using the log scale on voiced
segments only retained higher performance. Further, in most cases adding machine generated
pseudo-labels improved slightly the overall performance from the first to the third iteration.

Also, models trained under semi-supervision performed best on the SUSAS dataset, closely
followed by AVIC and emoDB (cf. Table 3). Table 4 shows the best results attained on datasets
when the neural networks were trained with only availability of 20% of labelled samples per
class. Investigating the quality of pseudo labels generated, it was found that the number of accu-
rate pseudo-labels generated for these three datasets at the end of the second iteration was higher
as compared to the remaining datasets (2613 out of 2946 accurate pseudo-labels for SUSAS as
compared to 1889 out of 2439 for VAM when trained using 30% labelled data with spectrogram
images extracted in the log scale). While the presence of more labelled data increased in the
overall classification performance of the neural networks (cf. Tables 2 and 3), the quality of
labels also plays a significant role on classification correctness (cf. Tables 3 and 4).

Table 4 – Comparison of the unweighted F1-Scores at the end of the first and the third iteration using
semi supervision for the AVIC, emoDB, and the SUSAS datasets with only 20% of each class labelled.

.

Dataset baseline log mel
Iteration 1 Iteration 3 Iteration 1 Iteration 3 Iteration 1 Iteration 3

AVIC 0.60 0.58 0.68 0.69 0.64 0.68
emoDB 0.70 0.73 0.61 0.67 0.59 0.64
SUSAS 0.79 0.81 0.82 0.83 0.76 0.78

Finally, the removal of non-voiced segments improved in the classification performances
of the neural networks, when trained under full-supervision as well as with semi-supervision
(cf. Tables 2 to 4).

6 Conclusion and Outlook

This research considered the concept of SER as an image classification task with the help of
pseudo-labels. We observed in all the experiments that the retention of only the voiced seg-
ments improved the overall F1-Scores as compared to the baseline. While there were improve-
ments in the F1-Scores on models trained with pseudo-labels, as compared to those trained with
only a handful of ground-truth labels, the generation of pseudo-labels with high confidence (cf.
Sec. 4.4) could lead to an improved performance for SER using semi-supervised techniques.
The current experiments were conducted in a gender-independent fashion, so future studies will
involve pseudo-labelling of affects gender-specifically, assuming a better classification perfor-
mances of the neural networks.
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