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ABSTRACT: Current approaches to voice diagnosis involve a clinician examining 
the patient, listening to their voice and in some cases, using additional measurements 
of the larynx such as EGG. Here we train a feedforward convolutional neural network 
on a database of normal healthy drama students recorded speaking passages in English, 
to reconstruct the associated EGG (Lx) waveform. We then use the network to predict 
the EGG from the acoustic speech signal on a different set of speakers, including ones 
that exhibit laryngeal pathologies. We show the predicted EGG is very similar to the 
actual recorded EGG and, as such, can provide a useful indication of voice pathology. 
Importantly, the network is able predict the pathological EGG waveforms even though 
it was never trained on pathological speech. 

1 Introduction 
1.1 Electroglottography 

Electroglottography (EGG) is an electrical impedance-based measurement technique that yields 
physiological information on vocal fold contact and vibratory patterns using electrodes placed 
externally on the neck over the patient’s larynx. At present in clinical environments, access to 
such information can only be obtained from EGG since systems that reliably obtain EGG esti-
mates or even explicit estimates of voice pathology from the acoustic signal are not available 
in commercial products. Consequently, EGG is employed worldwide to assist the diagnosis of 
laryngeal pathologies. However, EGG cannot be used with all patients or in a telemedicine 
setting.  

1.2 Previous work 
Early work [1]-[2] was the first to show that it is possible to train a neural network on data 
labelled using the associated EGG waveform [3] to determine glottal closure directly from the 
speech signal. Based on this early work, real-time estimation of the fundamental period of vocal 
fold oscillation was also possible [4]. Due to advances made in deep neural networks, it has 
recently been shown that it is now possible to accurately reconstruct the entire EGG signal 
directly from the acoustic speech signal [5]-[6]. Similar work using a shallow neural network 
was also carried out to extract vocal fold closure points and also reconstruct the EGG [7].  

To assess the condition of the larynx, patients experiencing voice pathologies are generally 
asked to read specially developed texts and utterance, in which pathological effects manifest 
themselves. Here we build and test a system to estimate EGG from the acoustic speech signal 
on one such text using a convolutional neural network. We show that it is possible to reconstruct 
EGGs for several normal and pathological speakers. For the pathological speakers, we show 
that the predicted EGG is indicative of the voice pathology that is present. 

2 Methods 
 
2.1 Dataset 
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We first consolidated currently available normal and pathological speech and EGG datasets 
from normal healthy and clinical populations. The normal healthy speech consisted of high-
quality 16-bit recording of first-year undergraduate drama students reading the phonetically 
balanced “Arthur the Rat” passage in British English [8]. The speech signal was recorded using 
a Bruel and Kjaer condenser microphone and the speech and Laryngograph signals (EGG using 
guard ring electrodes) were digitized in 16-bit resolution at a sampling rate of 32kHz. The clin-
ical data consisted of 3 normal healthy speakers and 5 that exhibited voice pathologies, recorded 
in a normal clinical environment at either 48 kHz or 16 kHz. 

2.2 Preprocessing the data 
Firstly, Gaussian noise was added to the training data to achieve a SNR of 20 dB, in order to 
make the anechoic data more representative of real-world speech signals. The speech and 
Laryngograph data were then down-sampled to 4kHz. This was performed to reduce the pro-
cessing load needed to train the network and also to ensure all datasets were processed at the 
same sampling rate. The data was subsequently high-pass filtered at 25Hz with a bidirectional 
4-pole Butterworth filter, to remove low-frequency components in the EGG signal arising from 
electrode movement. Clearly such effects are not observable from the speech signal and would 
only constitute a hindrance to EGG reconstruction and introduce an offset that cannot be recon-
structed. Similarly, slowly changing pressure measurements from the microphone were re-
moved by this pre-processing. Finally, the means of each participant’s speech and EGG signals 
were subtracted and signal amplitude was divided by signal’s standard deviation. In total 49 
speakers from the normal drama student dataset (33 male, 16 female) were used to train the 
network. This constituted about 100 minutes of training data in total. The network was evalu-
ated on an additional 4 participants (male) from the same drama student dataset, as well as all 
8 of a clinical dataset speaker: 3 normal (male) and 5 pathological (2 male, 3 female).   
2.3 Network structure 
To map between the acoustic speech signal and the EGG (Laryngograph waveform), a convo-
lutional neural network (CNN) was used to implement non-linear regression. The network con-
sisted of an input window of 81 adjacent speech samples, 2 convolutional layers of 50 nodes 
with input width 20 and ReLu output activations, and finally a fully connected layer with a 
regression output. It was trained using the Adam optimizer using a minibatch size of 1024. This 
network architecture was an initial guess at a suitable network structure and better architectures 
for this task almost certainly exist. We note that a fully connected network with 81 inputs, 2 
fully connected layers with 50 hidden nodes and ReLu activations functions and an output re-
gression layer generated comparable results, although they are not shown in this paper. 
2.4 Implementation 
The CNN was implemented in MATLAB within the Deep Neural Network Toolbox. Training 
was performed on a Windows 10 PC fitted with an NVIDIA GEFORCE RTX 2080Ti graphics 
card. Training was run for 4 hours, although longer training may have improved performance. 

3 Results 
 
The results presented here are representative of the testing dataset. 

3.1 Laryngograph signal reconstruction on normal speech 
 
Fig. 1. Shows testing carried out on a normal voice male speaker from the student dataset, who 
was not used for network training.  It can be seen that the Lx signal in the middle of the second 
part of the signal indicated that contact substantially reduced, even though voiced excitation 
clearly continues. 
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Figure 1. Example testing for normal male speaker from the student dataset who was not used to train 
the CNN. Panels from the top show the speech waveform, the simultaneously recorded Laryngograph 
signal (Lx), and the Lx signal estimated using a CNN.  It can be seen that the Lx signal in the second 
part of the signal indicated that contact has substantially reduced even though voiced excitation 
continues. However the CNN estimate generalizes and generates an output in this region and shows 
offset and onset. 

 
Figure 2. Example from another normal male speaker from the student dataset who was not used to 
training the CNN. Panels from the top show the speech waveform, the simultaneously recorded 
Laryngograph signal (Lx), and the Lx signal estimated using a CNN.  Close-up shows that the Lx and 
CNN Lx estimate waveform shapes are very similar. 

file=D:\MacDataLocal\DeepNetTests\DEEP CNN 6 245m\LAMDA001 whenever his.sfs title=LAMDA001 whenever his SFS/Eswin Vs 1.93
13260 13280 13300 13320 13340 13360 13380 13400 13420 13440 13460 13480 13500 13520 13540 13560 13580 13600 13620 13640 13660 13680 13700 13720 13740Time (ms)

9118 

-10006 

SP.01cnv2sfs(file=D:\MacDataLocal\DeepNetTests\DEEP CNN 6 245m\LAMDA001Sp.WAV)

28049 

-13926 

SP.02cnv2sfs(file=D:\MacDataLocal\DeepNetTests\DEEP CNN 6 245m\LAMDA001Lx.WAV)

24850 

-16879 

SP.03cnv2sfs(file=D:\MacDataLocal\DeepNetTests\DEEP CNN 6 245m\LAMDA001MLPLx.WAV)

13260 13280 13300 13320 13340 13360 13380 13400 13420 13440 13460 13480 13500 13520 13540 13560 13580 13600 13620 13640 13660 13680 13700 13720 13740Time (ms)

file=D:\MacDataLocal\DeepNetTests\DEEP CNN 6 245m\LAMDA002.sfs title=LAMDA002 closeup SFS/Eswin Vs 1.93
37022 37024 37026 37028 37030 37032 37034 37036 37038 37040 37042 37044 37046 37048 37050 37052 37054 37056 37058 37060 37062 37064 37066Time (ms)

12108 

-9649 

SP.01cnv2sfs(file=D:\MacDataLocal\DeepNetTests\DEEP CNN 6 245m\LAMDA002Sp.WAV)

26665 

-20204 

SP.02cnv2sfs(file=D:\MacDataLocal\DeepNetTests\DEEP CNN 6 245m\LAMDA002Lx.WAV)

23974 

-17955 

SP.03cnv2sfs(file=D:\MacDataLocal\DeepNetTests\DEEP CNN 6 245m\LAMDA002MLPLx.WAV)

37022 37024 37026 37028 37030 37032 37034 37036 37038 37040 37042 37044 37046 37048 37050 37052 37054 37056 37058 37060 37062 37064 37066Time (ms)

171



 

Figure 3. Example normal male speaker from the clinical dataset. Panels from the top show the speech 
waveform, the simultaneously recorded Laryngograph signal (Lx), and the Lx signal estimated using a 
CNN.  Close-up shows that the Lx and CNN Lx estimate wafeform shapes are very similar. The Lx and 
predicted Lx cycles are very similar in shape. 

 

Figure 4. Irregular speech for male patient with Vocal Cord Palsy. Panels from the top show the speech 
waveform, the simultaneously recorded Laryngograph signal (Lx), and the Lx signal estimated using a 
CNN.  It can be seen that there is limited contact shown in the Lx signal. Note that the predicted Lx 
from the CNN also captures the shape of the Lx cycles. It also accurately infers the condition where 
little contact is made. 
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Figure 5. Speech for a female patient with Muscle Tension Dysphonia. Panels from the top show the 
speech waveform, the simultaneously recorded Laryngograph signal (Lx), and the Lx signal estimated 
using a CNN.  It can be seen that there is limited contact shown in the Lx signal. Note that the lack of 
contact in the Lx waveform is also present in the CNN Lx prediction. 

 
Figure 6. Speech for male patient with Adductor Spasmodic Dysphonia. Panels from the top show the 
speech waveform, the simultaneously recorded Laryngograph signal (Lx), and the Lx signal estimated 
using a CNN. 
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However, in this case the CNN estimate generalized and generated an output in this region. 
Fig, 2. shows testing on another normal male speaker from the student dataset, who was not 

used to train the network. The Lx and predicted Lx waveform cycles are very similar in shape, 
although the estimated Lx appears smoother. 

Fig.3. shows an example of a normal male speaker from the clinical dataset that was used to 
test network operation. Once again, the Lx and predicted Lx waveform cycles are very similar 
in shape. 

3.2 Laryngograph signal reconstruction on pathological speech 
 
Fig.4. shows the incomplete vocal fold closure for a male patient with Vocal Cord Palsy and 
the shape of Lx is well replicated in the CNN estimate of EGG. 
      Fig.5. shows a lack of contact in the Lx waveform, which is also quite irregular, for a female 
patient with Muscle Tension Dysphonia and these features are also present in the CNN Lx 
prediction. 
      Fig.6. shows the rather chaotic excitation in a male patient with Adductor Spasmodic Dys-
phonia is replicated in the CNN estimate of EGG. 
 

3.3 Laryngeal state observability 
 
The sample-by-sample analysis of the acoustic speech signal by the CNN was able to effectively 
replicate EGG, even when it became very irregular. In particular, the predicted EGG also ex-
hibited the cycle-by-cycle shape characteristics of the EGG waveform.  
       From a control engineering and reinforcement leaning perspective, one issue that is appar-
ent by consideration of the speech and EGG waveforms, is that the the laryngeal system is not 
generally fully observable. For example, it is not possible to fully estimate the state of the vocal 
folds just by consideration to the EGG waveform. Firstly, EGG is a 1-dimensional signal and 
cannot distinguish the effect of the 2 vocal folds. Also, since EGG relates to changes in current 
flow and contact, when no contact is made, little modulation of the EGG signal is observed. 
This is illustrated in Fig. 1. Here, consideration to the speech waveform shows that voiced ex-
citation due to vibration of the vocal folds is still present. In such conditions vocal fold vibration 
is unobservable in the EGG. Conversely, the EGG signal provides a very good estimation of 
vocal fold contact, the effects of which manifest themselves less directly in the acoustic signal. 
 

4 Discussion 
 
4.1 Summary 
We trained a convolutional neural network (CNN) to reconstruct the EGG waveform from just 
the acoustic speech signal. We showed that a convolutional neural network was able to generate 
good estimates of EGG on normal and pathological speech that was not used in training.  
 
4.2 Limitation of the current study 
Although respectable results were achieved, the network used here was a first guess as a suitable 
structure. In particular the network used was quite shallow. Deeper networks and, for example, 
ResNets, as well as networks including recursive layers, such as LSTMs, may give even better 
results. In the future, both the network architecture and its hyperparameters will be investigated 
and further optimized.  
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In the current work, the network was only trained on a limited quantity of normal speech. 
As is well known in work on deep learning, additional data is likely to improve performance 
and also make training deeper network architectures viable.  

The value of EGG (which would also include EGG predicted from the acoustic signal) 
in the diagnosis of laryngeal pathologies is well recognized, but it is currently very cumbersome 
to use clinically. This is because clinicians have to identify speech regions by hand in order to 
estimate the presence of any abnormality. Thus, although evaluating voice disorders with the 
assistance of EGG recordings is possible, at present the analytical capability within clinical 
practices are rudimentary and most clinical information is not extracted from the EGG signal. 
This is because manual data labelling to identify epochs that are indicative of laryngeal pathol-
ogies is clinically impractical. Such critical regions are, for example, transitions from vocalic 
to fricative sounds and vice-versa. Automatic detection of critical parts of speech would enable 
analysis metrics relating to pathology be made automatically. Therefore, a system that can iden-
tify regions of interest on the one hand, and extract useful metric directly from acoustic speech 
signal alone using an EGG-trained network model, would be of great value. 

Future work will also make use of speech from pathological as well as normal speakers. 
Such an approach then has the potential to automatically detect the presence and also the loca-
tions of where speech pathology occurs in speech utterances. Indeed, such an approach would 
also provide a means for a neural network-based system to create specific features to extract 
indications of speech pathology itself directly from the speech (and also EGG) waveforms. This 
would avoid the need for using less effective hand-crafted features, such as those based on 
simplistic concepts of open quotient, and so on. Thus, training on pathological and normal 
speech should kill two birds with one stone in both identifying and locating pathological con-
ditions in speech utterances. 

Longer range effects that manifest themselves over lengthier timescales than individual 
excitation epochs and relate to prosodic and breathing aspect of speech productions are also 
likely to provide a source of useful information in quantifying voice pathology. Such issues will 
also be investigated in the future. 
 
4.3 Practical applications 
At present, EGG cannot be used with all patients. Moreover, EGG requires a patient physically 
visiting a specialist. Performing an automatic analysis of the patient’s condition on the basis of 
only the acoustic signal would therefore be very beneficial. Speech-only operation will also 
widen the area of application to include other fields where EGG devices cannot be accessed. 
For example, in occupational settings for professional voice users, such as class-room teachers, 
or to enable longitudinal studies to be run with repeat measurements over a period of time. 
Speech-only analysis of voice also opens-up the possibility of remote diagnosis, since speech 
input could potentially also be recorded using smartphone technology.  
 
4.4 Sensory integration 
The fact that EGG can be predicted from the speech signal indicates that much information 
obtained from the EGG is present in the speech signal. This suggest that there is now a strong 
opportunity of building commercial systems for estimating EGG in a clinical setting without 
actually recording it directly. Since much EGG information is present in the speech signal, it 
also indicates that measures of voice quality and voice pathology that currently make use of 
EGG can almost certainly be directly estimated from the acoustic signal. 

However, taking a sensory-integration perspective, we suggest that providing a suitable 
processing structure is used, using both speech and EGG, is likely to give a better estimate of 
vocal condition than using just a single signal. Additional measurements, even when noisy or 
intermittently uninformative, are still useful. Indeed, incorporating a video stream of vocal fold 
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vibration could also be integrated into such a system, further improving the estimate of what is 
going on at the vocal folds and indeed provide a direct estimate of pathology. Using commer-
cially available neural network frameworks, such as those integrated in MATLAB, designing 
networks to realize such multi-sensory integration across modalities would be a simple task. 
Having generated a more complete estimate of vocal fold activity and state using such an ap-
proach, it may then subsequently be possible to estimate it directly too from the speech signal 
by means of another neural network. 
 
4.5 Model free versus model-based analysis 

Neural networks represent a model-free black box approach to solving problems in regression 
and classification. They do not assume any particular data model but rather constitute an em-
pirical model that fits the available data by optimizing parameters in their computational archi-
tectures. In contrast, it’s also possible to adopt a model-based approach to data analysis. The 
latter can involve building a physical model of the system and using optimization or reinforce-
ment learning approaches to fit the model’s parameters to the data. One advantage of the latter 
approach is that it can make the operation more understandable. Indeed, understandable AI has 
now become a big theme because it is now widely recognized that it is not only important to 
make decision or assessments of decisions made on the data. It is also important to justify why 
decisions were made. Consequently, future work will also investigate the use of model-based 
approaches to fit models of the vocal fold and larynx to the data, and identify pathologies when 
parameter values exceed those seen in models of normal phonation. 
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