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Abstract: In the early times of automatic speech recognition, bottom-up segmenting 
of speech into syllables has been investigated. But this approach was not competitive 
to current solutions. Recent cortical measurements lead to the conclusion, that evolu-
tion has found a neural implementation, which perform reliably a bottom-up segmen-
tation of the auditory signal into syllables.  This segmentation is based on θ – oscilla-
tions, where the duration and position of each syllable is related to the duration and 
position of each cycle of the θ-oscillations [6]. For transporting information and 
steering rhythmic tasks, θ oscillations were observed in many locations of the brain, 
especially in the thalamus. Yet, nor the cortical location of the θ-oscillator for seg-
mentation of syllables, nor the implementation of the θ-oscillator itself is known. 
Neural models of θ-oscillators for syllable segmentation are scarce. We follow the 
approach [9], where the θ-oscillator is built up by PING microcircuits. In [9] these 
PINGs are driven by the sum of auditory signals given in each critical band (CB). In 
this paper this approach is extended by using onset edge features extracted in CBs.  
First experiments showed that the CB-PINGs deliver spikes related to the onset of 
syllables, which corresponds to a specific phase of the θ-cycles. The timing of the 
spikes from the CB-PINGs differs slightly. By interconnecting appropriate CB-
PINGs, it seems possible to reduce the differences leading to a ‘unified’ θ-oscillation. 

1 Introduction 
The syllable is basic for human speech perception [24]. In the auditory and sensory motor 
cortex (vSMC), the auditory features are transformed to an articulatory code related to articu-
latory gestures building the onset, the middle and the coda of syllables. This code is transport-
ed to the short-term memory, thus acting as a syllabic interface for cognition. This approach 
needs a mechanism to segment the auditory signal into chunks of syllables. Due to recent pro-
gress in measuring the activity of population of neurons, it seems, that evolution has found a 
solution to perform reliably a bottom-up segmentation of speech into syllables [6]. This seg-
mentation is based on θ – oscillations, where the duration and position of each syllable is re-
lated to the duration and position of each cycle of the θ-oscillations.  
In the 1980th, when automatic speech recognition systems started to be developed, it was 
aimed to mimic this bottom-up approach in segmenting speech into phonetic units [4]. This 
approach was implemented by ‘knowledge-based rules’ by inspecting the short-term spectra 
of speech [2]. In [1], the rules for detecting ‘syllable-initial stops’ indicating the onset of a 
syllable are evaluated. Also, the human brain detects such onset events within a syllable called 
edge features (see chapter 2). As described in chapter 3, these features are input to an θ-
oscillator generating θ-oscillations to segment the auditory signal into syllables1. Yet still 
nowadays, no competitive algorithm mimicking the human approach has been found. Instead, 
the borders of phonetic units are determined by an algorithm, which combines acoustic fea-
tures processed bottom up with top-down knowledge given by a language model [7]. In this 
approach, there exist no interface for syllables.  

 
äo The θ-oscillations are used also to transport codes [25] 
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In the brain of humans and animals, especially in the thalamus, various locations have been 
detected, where oscillations are involved in transporting information and steering quasi-
rhythmic actions [21]. Yet for solving the task ‘segmenting the auditory signal into syllables’ 
nor the neuronal location nor the detailed functionality of an θ-oscillator generating the θ-
oscillation for this task is known.  
This lack in knowledge is caused mainly by the immature technology in measuring in vivo the 
sensitivity of neuronal populations stimulated by speech. For such measurements high spatial 
and temporal resolution is needed, which nowadays can be provided by invasive measure-
ments only e. g. cortical electrocorticography (ECoG) performed in clinical settings. Yet the 
spatial resolution of the electrode-pads measuring the activity of neurons is strongly limited, 
as the electrodes are spaced in large distances compared to the size of neurons. 4mm distances 
of electrodes have been reported in recent papers [8], [10]. Those distances lead to very sparce 
sampling of the activity of populations of neurons2. Thus, the knowledge to investigate the 
functionality of neuronal populations, is based on measuring the activity of few neurons, con-
nected to electrodes by chance. Thus, most neuronal models are based on hypotheses, whose 
evidence is concluded from the measurements available and from other knowledge sources. 
In this paper, where we propose a model of an θ-oscillator segmenting the auditory signal into 
syllables, we use following hypotheses:  

H1- The θ-oscillator is built up by inter-neuronal network gamma (PING) microcircuits 
driven by features related to the envelope of the auditory signal.  
H2- The features are based on the gradient of the envelope leading to envelope features 
and are based on the maxima of the gradient of the envelope leading to edge features.  
H3- The features are extracted within critical bands (CB) leading to an architecture of the 
θ-oscillator producing oscillations for each critical band (concept of CB-PINGs). 

Models for simulating a θ-oscillator segmenting the auditory signal into syllables are rare. We 
follow the biophysically inspired model described in [9], which uses hypothesis H1 but not 
H2 and H3. The evidence of the hypotheses H2 and H3 is based on following findings: 
H2: evidence of the existence edge features is given by psycho-acoustic findings. Huggins [3] 
noted: …The results suggest that the perception of timing in natural speech is based on events 
at the syllabic level rather than at the segmental level, and that it is important to maintain the 
rhythm of the sentence, as defined by the onsets of vowels (especially stressed vowels), if the 
sentence is to sound temporally fluent.  These psychoacoustic findings are in line to recent 
neuronal measurements in the superior temporal gyros (STG). Populations of neurons have 
been detected, which are sensitive to edge-features related to the maximal energy rise of the 
envelope of the auditory signal during the onset of vowels [8]. But the measurements provide 
not the information needed to simulate exactly the functionality of the edge-features. For sim-
ulation, in chapter 2 a ‘plausible’ implementation for the edge features is described. Due to the 
conclusion given in [8], envelope features seem not to be involved in the θ-oscillator. 
 H3: evidence for the CB-approach is based on psycho-acoustic experiments, where the enve-
lope within critical bands is manipulated. Decreasing the modulations in critical bands [5, 22] 
showed specific decrease in the intelligibility of speech. Thus, the ‘correct’ temporal structure 
of the syllabic envelopes within critical bands is essential for perception. Consequently, we 
conclude, that along the ‘perception path’ the processing of features is performed within criti-
cal bands. 
Yet, as in [9], it is argued that the θ-oscillator is based on a broad-band analysis derived from 
the envelope of the complete auditory signal. The main argument for a broad-band approach 
is given by the view, that the oscillations are generated without spectral analysis of auditory 

 
2 Typically, in a 2mm2 area about 100 000 neurons are active. 
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signal. Further the broadband approach has the advantage that only a single θ-oscillation is 
generated by the θ-oscillator. Still another view is given in [16, fig.1], where it is hypothe-
sized that the ‘final’ θ-oscillator is located in the ventral sensory motor cortex. This θ-
oscillator could be driven by features windowed by CB-specific oscillations. Thus, this θ-
oscillator has a distributed architecture. 

2 The Features Driving the θ-Oscillator. 
Human auditory features are extracted along the auditory pathway starting at the hair cells 
located at the basilar membrane and ending at the auditory cortex. On this path the spectra-
temporal properties of the auditory signal provided by the hair cells is performed leading to 
primary features. The processing of the primary features is done within critical bands (CBs) 
by populations of neurons ordered tonotopically in the inferior colliculus (IC) located in the 
midbrain [11]. The primary features are tuned to all kinds of sounds important for reacting 
acoustic events in the environment. Precise models for simulating the primary features have 
been developed [20] based on measurement of mammals, which process the auditory signal in 
the same way. The auditory path ends with the transport of the primary features to the belt of 
the auditory cortex located in the Superior Temporal Gyrus (STG). In this human specific 
area, a transformation of the primary features to features tuned to the sounds of speech is per-
formed. Recent ECoG measurements showed that from the posterior to the anterior axis of the 
STG two types of spectral-temporal features are located [10]. The first type of features, whose 
neural populations are located anterior, are sensitive to slow temporal modulation and to de-
tailed spectral resolution. The second type of features, whose neural populations are located 
posterior, are sensitive to fast temporal modulation and poor spectral resolution. We assume 
that the edge features driving the θ-oscillator belong to this kind features. 
The edge features are derived from the gradient of the envelope curve of the auditory signal 
extracted in critical bands (see fig.1).  The instance and strength of the maximal rise of the 
envelope curve (maxima of the gradient curve) given at the onset of a vowel as measured in 
the STG [8] define the edge features (in the current implementation the strength is not used).  

 
Figure 1 - phone /ae/ from the utterance ‘Jack Webster’; top: speech 
signal; below auditory signal and its envelope analyzed for a critical band 
filter with center frequency 1409 Hz. 
 
To implement the envelope features (not used in the current 
implementation of the 𝜃-oscillator) and edge features we 
start to compute the primary features [13] based on the mod-

el [15]. Human primary features are generated in 24 critical bands, where in each band the 
AM-FM modulation of the auditory signal is extracted. Based on Fletchers importance func-
tion [12] perception of phones takes place in the frequency range of fl = 100 Hz till fu=9000 
Hz covering the range of 21 critical bands. As the experiments (see chapter 4) are performed 
with speech sampled with 16kHz, we restrict the processing of the primary features to 19 crit-
ical bands covering a range of 3-21 Bark with center frequencies 248, 328, … 6330, 7423 Hz. 
To determine the edge features only the envelope of the auditory signal is used, and the spec-
tral information is discarded. The neural implementation of the gradient of the envelope-curve 
is not known. We use as gradient the difference from neighbored samples. Samples of a 
smoothed gradient curve are processed within a ‘frame’ of 10ms. As concluded in [8] the neu-
rons sensitive to edge features indicate the maximal rise of the syllabic envelope at the onset 
of vowels. To simulate this property, we determine the maxima of the samples of the 
smoothed gradient curve extracted in regions with positive gradient. Instead using the broad 
band envelop of the auditory signal as done in [8], the envelope curves are processed within 

139



 

 

critical bands. Thus, for each critical band edge features are extracted. As shown in chapter 4, 
at the instances of a maxima given by the edge feature, a spike is sent to a synapse driving the 
θ-oscillator. 

3 The Θ – Oscillator 
In section 3.1. the neural architecture of the θ-oscillator is described. The components of the 
architecture are interconnected PING microcircuits [17] driven by CB extracted edge features. 
This approach leads to the concept of CB-PINGs, where CB-specific PINGs are implemented. 
The simulation of the activity of the neurons constituting the CB-PINGs is performed by an 
approximated model of the biophysical Hodgkin-Huxley model as described in section 3.2. 

3.1 The Architecture of the Θ – Oscillator 
As shown in fig.2, the architecture of the Θ - oscillator is determined by the composition of 
microcircuits of CB-PINGs. The CB-PINGs are realized by PINGs as shown in fig. 3. Each 
CB-PING is related to one of the critical bands CB3 – CB21, and each CB-PING is driven by 
the envelope features and edge features extracted in this band (in the current implementation 
the envelope features are not used). The CB-PINGs generate as output  𝜃-spikes 𝜃𝑘, 𝑘 =
3, … ,21. 
 

 
 
 
Figure 2 - Architecture of the θ-oscillator. The intercon-
nections denote synaptic connections between Te/Ti 
neurons from different CB-PINGs.  
 
 
 

 
Figure 3 - A PING is realized by two coupled populations of 
neurons - an excitatory population (Te) and an inhibitory popu-
lation (Ti), where each population is modeled by a single neu-
ron (see section 3.2). 
 
The output of each CB-PING should be a spike posi-
tioned at the onset of a syllable at the instance with 
largest increase of the CB-envelope at the onset of 
vowel. These instances can be related to the instanc-

es of phases 𝜔𝑡 = 0, 2𝜋,…  of a sinus-wave 𝜃 = sin(𝜔𝑡), because on these instances, the sin-
wave rise is maximal. The instant frequency 𝜔(𝑡) is given by the distances between neigh-
bored spikes. The output of a CB-PING related to a CBk are 𝜃𝑘 − 𝑠𝑝𝑖𝑘𝑒𝑠 corresponding to 
sine wave oscillation 𝜃𝑘, 𝑘 = 3, … ,21. 
As described in section 3.2 the generation of the𝜃𝑘 − 𝑠𝑝𝑖𝑘𝑒𝑠 depends on the current flows 
within the Tek-cells. The synaptic interconnections between the CB-PINGs influence these 
currents strongly. Changes in the strengths of the currents lead to changing instances of the 
𝜃𝑘 − 𝑠𝑝𝑖𝑘𝑒𝑠.  

3.2 An Approximative Hodgkin-Huxley Model 
The Hodgkin-Huxley model [17] determines the potential u of the cell-membrane of a neuron 
given by a first order differential equation: 𝑑𝑢

𝑑𝑡
= 𝑓(𝑢, 𝐼𝑠𝑦𝑛, 𝐼𝐼𝑁𝑃, 𝐼𝐷𝐶)                          (1) 

. 

. 

. 
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depending on u and the current flows ISYN, IINP, 𝐼𝐷𝐶. The current flows are ion flows, which 
enter or leave the cell via gates. ISYN denotes the flow induced by synapses and IINP denotes the 
flow induced directly at the gates. 𝐼𝐷𝐶 is a constant current flow induced within a gate. In the 
original Hodgkin-Huxley model, each flow is dependent on complex gating variables leading 
to spikes with time dependent shape. In our approximated model, the spikes are modelled by a 
time independent triangle tr with different decreasing time for Te and Ti cells. The rising time 
is 5ms and the decreasing time is of 20ms/100ms for the Te/Ti cells. This approximation leads 
to a current flow 𝐼𝑖

𝑆𝑦𝑛 described by equation (2). 𝐼𝑖
𝑆𝑦𝑛 is composed by the output of all neu-

rons j connected to the cell i via a synapse. tj denotes the instance, where cells j ejects a spike. 
The spike-triangle tr(t), the gating weights gij and the difference (𝑢𝑆𝑦𝑛 − 𝑢𝑖(𝑡)) determine the 
synaptic current flow from a cell j to a cell i. As seen in equation (2), 𝑢𝑆𝑦𝑛 can take on two 
values dependent on the nature of the synapse. 

𝐼𝑖
𝑆𝑦𝑛(𝑡) = ∑ 𝑔𝑖𝑗t𝑟(𝑡 − 𝑡𝑗)𝑗 (𝑢𝑆𝑦𝑛 − 𝑢𝑖(𝑡)); 𝑢𝑆𝑦𝑛 = {

0𝑚𝑉𝑒𝑥𝑖𝑡𝑎𝑡𝑜𝑟𝑦𝑠𝑦𝑛𝑎𝑝𝑠𝑒𝑠
−80𝑚𝑉𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑒𝑑𝑠𝑦𝑛𝑎𝑝𝑠𝑒𝑠         (2) 

The currents 𝐼𝑖𝐼𝑁𝑃 is modeled by  𝐼𝑖𝐼𝑁𝑃(t) = 𝑔𝐹𝐹𝑖(t).                    (3) 
 𝑔𝐹 denotes a gaiting weight for a feature with value𝐹𝑖  connected to the gate of a cell i. To-
gether with the approximations (2) and (3), the differential equation (1) is given by: 
𝑑𝑢
𝑑𝑡

= 𝑔
𝐶
(𝑢𝐸𝑄 − 𝑢(𝑡)) + 𝐼𝑆𝑦𝑛(𝑡) + 𝐼𝐼𝑁𝑃(t) +𝐼𝐷𝐶; 𝑢(𝑡) > 𝑢𝑇𝐻 → 𝑢(𝑡 + 𝑑𝑡) = 𝑢𝑅𝐸𝑆𝐸𝑇(4) 

At rest, when all flows are 0, u(t) approaches the value 𝑢𝐸𝑄 = −67𝑚𝑉. Whenever u(t) reach-
es a threshold 𝑢𝑇𝐻 = −40𝑚𝑉, the cell emits a spike and returns to a value 𝑢𝑅𝐸𝑆𝐸𝑇 = −87𝑚𝑉. 
For each Te-neuron of a CB-PING, the synaptic current 𝐼𝑖

𝑆𝑦𝑛is given by the spikes ejected by 
the neurons generating the edge features and by the spikes generated by the synapses connect-
ing Te/Ti cells. The current 𝐼𝑖𝐼𝑁𝑃is given by the samples of the gradient produces by the enve-
lope features weighted by 𝑔𝐹. The weights 𝑔𝑖𝑗and 𝑔𝐹 determine the strength of the current 
flow into a Te-neuron of an CB-PING. The strength must be sufficient large to generate Θ-
spikes. Yet biologically, a single ion channel cannot deliver such high currents. To achieve 
such high currents, many synapses must send spikes to the Te/Ti cells. To achieve high cur-
rents the single neurons shown in fig. 3 are realized biologically by populations of neurons 
performing the same operation simultaneously. Thus, the weights𝑔𝑖𝑗and 𝑔𝐹 are a model for 
the sum of small weights from many synapses. 

4 Experiments 

4.1 Experimental Set Up 
For running the experiments with speech data, an articulatory speech database was chosen in 
view of future experiments. From a professional British speaker, 1300 phonetically diverse 
utterances (read speech) were recorded together with a Carstens AG500 electromagnetic ar-
ticulography [18]. The audio samples are down sampled to 16 kHz. The database is labelled 
automatically by forced alignment using the Combilex lexicon [19]. 
For simulating the θ-oscillator, the equations (2)-(4) are implemented in matlab. The parame-
ters of the neurons are the same as described in [9].  Eq. (4) is solved by the approximation: 
Δu = 𝑓(𝑢(𝑡), 𝐼𝑠𝑦𝑛(𝑡), 𝐼𝐼𝑁𝑃(t), 𝐼𝐷𝐶)Δt; 𝑢(𝑡 + Δt) ≈ 𝑢(𝑡) + Δu; Δt=0.5 ms 
Most computing time is needed for simulating the number of synapses implemented for inter-
connecting the Te and Ti neurons. Further the computing time is determined by the size of the 
timestep Δt used to solve the differential equation (1). Due to the smooth behavior of the 
curve of u(t), Δt=0.5 ms was chosen. 
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4.2 Generation of the Features 
The envelopes of the auditory signal are extracted within 19 critical bands (CB3-CB21) with 
center frequencies 248, 328, … 6330, 7423 Hz. First experiments showed that most spikes 
generated by the edge features correspond to the maximal increase of the envelopes in the 
range of vowels. As shown in fig. 4, the spikes of the edge-features spike earlier than those of 
the broadband reference edge features. This may be caused that in different CBs the rise of the 
CB-envelopes due to spectral properties given by the movements of the articulators. Some of 
the generated spikes are error prune (mostly insertion errors). Errors can be derived by com-
paring the instance of the spikes delivered by the edge to the instances of the reference spikes 
from a broadband analysis. Further the instance of the spikes generated by the edge-features 
related to different bands show differences.  
As shown in section 4.3 below, each CB-PING is able to reduce the insertion errors. Further, 
the network of connected CB-PINGs is able to diminish the temporal differences of the spikes 
generated by the not connected CB-PINGs leading to a ‘unified’ θ-oscillation. 

 
 
Figure 4 – features for the utterance Jack 
Webster realized by 3 syllables. The two 
curves at top (repeated right and left) 
show the envelope of the broad-band 
auditory signal together with the pulses 
generated at the maximum of the increase 
for vowel onset (edge feature of the broad 
band). The maximal increase is searched 
within a region given by the labels of the 
vowels (start/end) 
Below: feature-curves extracted from 
critical bands CB3 - CB8. For each band 
the curves show the gradient of the enve-
lope curve together with the spikes of the 
edge feature. 
 
 

4.3 The Nature of the Θ - Oscillator 
Two different architectures concerning the interconnections between the Te/Ti neurons are 
implemented. In one implementation, the CB-PINGs are not interconnected. Thus, each CB-
PING produces its own θk-spikes. In the other implementation, the CB-PINGs are intercon-
nected, where the output of each CB-Te/CB-Ti cell is connected to selected other CB-Te/CB-
Ti cells via synapses. Fig. 5 shows the inhibition mechanism of the PINGs to inhibit ‘follower 
spikes’ from the starting spikes of an edge features within a syllable. This inhibition depends 
on the duration of the Ti-spikes. Whenever a follower spike is in the range of the duration of 
the Ti-spikes, the follower spike is deleted. Thus, the first spike of an edge feature arriving at 
the synapse of a Te-cells is the ‘winning’ spike. This strategy leads to a ‘correct’ Te-spike, 
whenever the first one is the correct one. In the current implementation the first spike often is 
not the correct one. This fact must be considered for future implementation of optimized edge 
features. For not interconnected CB-PINGs the 𝜃𝑘 of the different CB-PINGs show more or 
less large differences. Dependent on the gate variables of the synapses performing intercon-
nections, the difference between the resulting 𝜃𝑘 can be manipulated. First experiments with 
CB-PINGs interconnecting the Te neurons only, show a tendency to ‘unify’ the different 𝜃𝑘-
oscillations, where instance of the reference Θ-spike is later than the instances of the unified 
oscillations.  

CB 3  

CB 4  

CB 5  

CB  7 

CB  6 

CB  8 
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A specific role has the ion current 𝐼𝐷𝐶 given in equation (4). In the simulation shown in fig. 5, 
𝐼𝐷𝐶 has the value 0 for Ti-neurons and the value 20 for Te-neurons. Comparing the potentials 
u of the Te and Ti cells, the Te potential has the tendency to rise between the non-spiking re-
gions caused by a positive 𝐼𝐷𝐶. Due to this rising potential in time, the Te cells get more and 
more sensitive to the input of synapses connected. Thus, missing spikes of an edge feature can 
be restored by the spikes ejected from Te cells of other bands.  
 

Figure 5 - Spike patterns of the Θ – oscillator for critical band CB3-CB6 for the utterance ‘Jack Webster’. The 
CB - PINGs are not interconnected; CB-Te-neurons are driven by the spikes of the edge features. The triangle 
spike of the inhibiting TI-cells has a rising time of 20ms and a falling time of 150ms. The six curves for each 
CBk; k=3-6 from left to right; first curve: reference spikes; second curve: spikes of the edge feature; 3. curve: 
𝜃𝑘 −spikes; 4. curve: potential u of the Te-cell; 5. Curve: spikes of the Ti-cell; 6. curve:  potential u of the Ti-
cell 
For future implementations, a learning algorithm must be implemented, which optimize the 
weights of the synapses to restore missing spikes und to minimize differences in the instances 
of the 𝜃𝑘 −spikes of different CBs. 

5 Conclusion 
The paper presents an implementation of a neural model of a θ-oscillator based on a CB-
PING architecture. Using speech of a labeled database first experiments show that the θ-
oscillator is able to produce spikes at the onset of syllables, which generate the θ-oscillations. 
The θ-oscillator is driven by edge features derived from the gradient of the envelope of the 
auditory signal. The temporal instances of the spikes of the edge features are error prune (in-
sertion, deletion). Yet the experiments show that the θ-oscillator can reduce the errors of the 
edge features. Provisionally, the errors are given by comparing the instances of the edge fea-
tures  to reference spikes of edge features, extracted from by a broadband analysis of the en-
velopes using the labeled position of the vowels. A neuronal derived concept to evaluate the 
quality of the spikes is still missing due to the lack of reference spikes measured in the cortex.  
The current implementation builds a platform for improving the edge features and the archi-
tecture of the CB-PINGs. To minimize the errors, a learning algorithm for optimizing the pa-
rameters of the θ-oscillator is needed. As the θ-oscillations lead to the concept to θ-syllables 
[23], the implemented θ-oscillator can help to study further the nature of the θ-syllable and the 
related articulatory code. This code is needed to implement Brain-Machine-Interfaces (BMI) 
to improve the communication abilities of handicapped people. Still the implemented algo-
rithm for an θ-oscillator is far away to compete with the algorithm for segmenting, imple-
mented in current ASR systems. 
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