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Abstract: We present a fully automatic solution for German video subtitling, with
a focus on lecture videos. We rely entirely on open source models and scripts for
German ASR, automatic punctuation reconstruction and subtitle segmentation. All
training scripts, 1000h of German speech training data, pre-trained models and the
final subtitling program are publicly available. It can readily be integrated into
lecture video platforms such as Lecture2Go. The automatically generated subtitles
can also serve as a basis to make the video material more accessible (e.g. via search,
keyword clouds, and the like) or for further manual revision, potentially helping in
significantly speeding up manual work. A particular challenge that we observe in
lectures are technical terms that are frequent in a particular lecture, but infrequent in
a typical language model and that might be out of vocabulary for a general purpose
ASR. We approach this challenge by extracting texts from accompanying lecture
slides to adapt the language model of our TDNN-HMM based ASR system. We
demonstrate the usability of the full system and its generated subtitles and evaluate
on a dataset of manually transcribed lectures with an average of 26.3% WER.

1 Introduction

Subtitles display the spoken content of a video in written text. They primarily make speech in
video accessible to persons with hearing limitations but can be helpful beyond this purpose, e.g.
to consume video in silence (or in noisy environments), or as a basis for further text-based tasks
such as search, summarization and translation. The European Accessibility Act [1] obligates
the public sector to implement accessibility measures. At the same time, remote learning using
lecture videos has become the norm during the Covid-19 pandemic in many higher learning
institutions. However, video subtitling is a tedious manual task. Even trained transcribers might
average 13-18x relative to the speech time without any automatic assistance [2]. As a result,
manual subtitling it too costly for many potential uses.

Automatic subtitling primarily requires automatic speech recognition (ASR) decoding on
the audio extracted from a video file, however there are further processing steps involved. The
output needs to be segmented into appropriate segments and punctuation must be added for
better readability. To account for peculiarities in the language used, it may be helpful or even
necessary (such as for many lectures) to adapt ASR using textual material. For spontaneously
uttered speech, such as lectures, further revision of speech, e.g. wrt. hesitations may be useful.

Our open source subtitling solution Subtitle2Go1 is a good starting point for all kinds of
German subtitling tasks; however, our primary use case is the automatic subtitling of all video
lectures published on our university’s lecture video platform Lecture2Go [3]2.

1Available as open source at https://github.com/uhh-lt/subtitle2go.
2https://lecture2go.uni-hamburg.de/
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2 Related work

Respeaking is a popular method to semi-automatically generate subtitles [4, 5, 6]. In these
systems, dialogs are respoken by a controlled speaker and decoded with a dictation-oriented
ASR software. Speech is recorded in a clear and controlled environment without noise and from
a known and professional speaker so that ASR errors are minimized. There is also the possibility
to adapt the ASR towards a single speaker, reducing errors further. While this is faster than
typing, it is still a tedious manual process.

Fully automatic subtitling systems on the other hand use audio channels extracted from
a video directly to generate subtitles. In [7] a fully automatic broadcast subtitling system for
several European languages was developed. The system used only closed source components and
private datasets. The German ASR system was trained using 150h of data, with a closed source
system. In [8], a fully automatic subtitling system for Slovak broadcasting news was developed,
also based on the open source toolkit Kaldi for ASR decoding. KIT Lecture Translator [9] is a
system that transcribes and translates lectures in real time.

We have previously published and evaluated a Kaldi [10] recipe for general purpose ASR in
German based on 1000h of aligned speech data [11] which forms the foundation for the system
presented here.

3 Subtitling Pipeline
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Figure 1 – Subtitling pipeline and processing steps.

Figure 1 shows our subtitling pipeline. We first run FFmpeg/pyFFmpeg to extract 16 kHz pcm
mono audio from any supported FFmpeg media file (all popular video formats are supported).
We then use feature derivation and decoding with PyKaldi [12], also mapping each word
to the alignment information from the decoder. We then apply an LSTM-model that adds
punctuation. Finally, we use a segment scoring function and apply beam search to search through
different segmentation alternatives. Finally, based on the alignment information and the segment
information, we write the complete subtitle file in either SRT or WebVTT format [13].

3.1 Punctuation

Typically, transcriptions from an ASR model lack punctuation, which is added in a separate
post processing step. Punctuation aids readability and also helps to segment the subtitles in
a subsequent step. We use Punctuator2 [14]3, a model based on bidirectional gated recurrent
units (GRUs) attention. The training is based on omitting the original punctuation of a text and
predicting it. Our training dataset is built with german-asr-lm-tools4: we crawl multiple sources
of German texts (ARD subtitles, Tagesschau news articles, speeches of the EU Parliament and
Wikipedia) and normalize the data in multiple steps.

3https://github.com/ottokart/punctuator2
4https://github.com/bmilde/german-asr-lm-tools
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Punctuation Precision Recall F1-score Error Rate

,COMMA 90.9 87.9 89.4
.PERIOD 89.2 92.2 90.7
?QUESTIONMARK 81.5 68.1 74.2
!EXCLAMATIONMARK 39.2 28.7 33.1
Overall 89.7 88.4 89.1

per token 2.08 %
per sentence 16.8 %

Table 1 – Punctuation prediction results on held out data.

At first, structural and meta data like wiki syntax, subtitle timings and XML data is removed.
Numbers are converted to words, using the same normalization as for the ASR language model
texts (ASR friendly format in subwords for numbers, e.g. 42 ! zwei und vierzig), abbreviations
are extended to full words (etc. ! et cetera). In the next step the raw sentences with special
characters (except .,?!) are filtered out. The next step is to tokenize the sentences with spacy5.

We train the model on 5 million lines of German text and show performance metrics on held
out data in Table 1. The model is able to restore the original punctuation correctly in 83.2% of
the sentences; as can be seen in Figures 5/6, remaining issues are partially due to other kinds of
punctuation (such as dashes).

3.2 Subtitle segmentation

We aim to segment the punctuated transcript to improve readability. The segmentation is based
on a beam search with manually tuned weights. We want to balance average segment length with
splitting at sentence punctuation (,.?!); all other potential splitting positions in a sentence are
evaluated based on the shortest connecting path in a parse tree of that sentence. The intent is that
we want to avoid splitting at words that are linguistically closely connected words/tokens, i.e.
they should not be separated across two separate screens (or lines) if possible, so that the reading
flow is not interrupted. Our beam search maximises a performance function that sums up all
individual segmentation decisions. In particular, we defined the performance fs for sentence s
that outputs a reward for segmenting at the position between the tokens t1 and ti+1 as :

fs(ti, ti+1) = rl +

8
><

>:

0.9 · len(s) if ti 2 {‘.’, ‘?’, ‘!’}
0.7 · len(s) if ti = ‘,’
scp(parsetree(s), ti,ti +1) otherwise

where scp is the shortest connecting path in the syntax tree (as parsed with spacy) and rl the
length reward for being as close as possible to the target token length for a particular segment.

rl = 2.3⇤ (ttl � |ttl � j|)

where ttl is the target token length and j the resulting length of the segment, if a split were to be
placed between ti and ti+1. In our experiments we set ttl = 10. We then maximize Â fs(ti, ti+1)
over all chosen segmentation paths, expanding the beam up to a maximum number of lookahead
tokens, evaluating each forward position from the current position i up to i+40.

Other constraints could easily be integrated: e.g. a performance function that depends on
the length in characters rather than tokens, or adding hard constrains on the maximum character
length for a subtitle segment. Another improvement could be to include pausing information
into the performance measure, or to differentiate between line and screen breaks.

5https://spacy.io/
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Figure 2 – WER for 17 German lectures, with topics ranging from education science to computer science.
The 14 anonymised speakers are sorted according to their average WER.

4 Evaluation

Figure 2 shows word error rates (WER) evaluated on 17 Universität Hamburg (UHH) lectures
from 2009 to 2014 that were manually transcribed, totalling 12h of video recordings with
subtitles. The average WER over all speakers and lectures on this test set is 26.3. Many of
the recorded lectures have challenging acoustics, as they were recorded in addition to students
attending the lecture hall. We also tested Subtitle2Go on one newer video, a public speech of Dr.
Frank-Walter Steinmeier from 2019, which yields a similar WER of 25.9.

4.1 Examples

1 Und diese Datenbank wollen wir jetzt im selben im Prolog System verarbeiten.

2 Und was wir dafür brauchen Sie ist ein Syntax Konstrukt.

3 Das Syntax Konstrukt sieht etwas anders aus, als wir das

4 von SQL etwa gewöhnt sind. Eben. Es ist aber

5 auch die Sache sehr stark kondensiert und auf den Kern gebracht.

6 Während also das Modell der relationalen Datenbanken in der Datenbank Welt

7 davon ausgeht, dass jedes Attribut einen Namen hat.

8 Also jede Tabellenspalten, einen Namen hat das an der im gesehen?

9 Ja, hier oben drüber steht ihr. Bei der Attribut Name

10 Machen wir jetzt die Vereinfachung, dass wir den Attributen am weggelassen,

11 dass es wieder eine Abstraktion, die wir machen.

12 Und wir ordnen die Information über die Positionen im Innen

13 in einem Tupel zu. Dass wir also wissen die erste

14 Argument Stelle ist die UNK der Identity Feier.

15 Die zweite Argument Stelle ist der ist das Einfamilienhaus und so weiter und so fort.

16 Der Unterschied besteht jetzt darin, dass dies ein geordnetes Tupel ist.

Figure 3 – Automatic output of our system for a section starting at 21:39 of "Relationale Datenbanken"
from Prof. Dr.-Ing. Wolfgang Menzel, 24.10.2013, "Softwareentwicklung III: Logikprogrammierung
(WiSe 13/14). URL: https://lecture2go.uni-hamburg.de/l2go/-/get/v/15458

In the following, we list two example outputs of our system, alongside manual subtitles that
were available for these videos. Both videos are publicly available on the Lecture2Go platform.
In Figure 3 and 4 we compare a snippet from a typical computer science lecture. Some key
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1 und diese Datenbank

2 wollen wir jetzt eben

3 Prologsystem verarbeiten

4 und was wir dafür brauchen ist ein Syntaxkonstrukt

5 ja das Syntaxkonstrukt

6 sieht etwas anders aus als wir das von SQL etwa gewöhnt sind

7 es ist aber auch

8 die Sache sehr stark kondensiert und auf den Kern gebracht während also

9 das Modell der realtionalen Datenbanken

10 in der Datenbankwelt

11 davon ausgeht dass jedes Attribut einen Namen hat

12 also jede Tabellenspalte einen Namen hat das haben wir eben gesehen

13 ja hier oben drüber steht immer der Attributname

14 machen wir jetzt die Vereinfachung dass wir den Attributnamen weg lassen das ist wieder

eine Abstraktion die wir machen

15 und wir ordnen die Information über die

16 Positionen im

17 in einem Tupel zu das wir eben wissen die erste Argumentstelle ist

18 die der Identifier die zweite Argumentstelle ist der

19 ist das Einfamilienhaus und so weiter und so fort

20 der Unterschied besteht jetzt darin, dass dies ein geordnetes Tupel ist

Figure 4 – Manual subtitles for a section starting at 21:39 of "Relationale Datenbanken" from Prof.
Dr.-Ing. Wolfgang Menzel, 24.10.2013, "Softwareentwicklung III: Logikprogrammierung (WiSe 13/14).
URL: https://lecture2go.uni-hamburg.de/l2go/-/get/v/15458

1 Aber die Hochschule ist kein Schonraum und keinen Spielplatz,

2 was Sie eben von der lebensgeschichtliche weit früher liegenden Bildungsstätte des

Kindergartens unterscheidet.

3 Wer als Professor oder als Student glaub verhindern zu müssen,

4 das unorthodoxe wissenschaftliche Thesen zu Wort kommen.

5 Wer glaubt, Bücher mit kontroversen Inhalten sollten aus den Bibliotheken verschwinden.

6 Das gibt es tatsächlich auch wieder solche Ansichten,

7 der hantiert aus dem Inneren der Wissenschaft mit dem gleichen tödlichen Gift.

8 Weder fundamentalistische blinde melden aus dem Namen der Rose.

9 Kurzum, Forschung und Lehre müssen frei sein.

10 Diese unersetzliche Freiheit zu achten und nicht zu missbrauchen, ist Aufgabe aller.

Figure 5 – Automatic output of our system for a section starting at 10:33 of "Rede des Bundespräsidenten
auf der HRK", Dr. Frank-Walter Steinmeier, 18.11.2019. URL: (https://lecture2go.uni-hamburg.
de/l2go/-/get/v/25345).

1 Aber die Hochschule ist kein Schonraum und kein Spielplatz,

2 was sie von der lebensgeschichtlich weit früher liegenden Bildungsstätte

3 des Kindergartens unterscheidet.

4 Wer – als Professorin oder als Student – glaubt, verhindern zu müssen,

5 dass unorthodoxe wissenschaftliche Thesen zu Wort kommen,

6 wer glaubt, Bücher mit kontroversen Inhalten sollten aus den Bibliotheken verschwinden

7 – und es gibt tatsächlich wieder solche Ansichten –,

8 der hantiert aus dem Inneren der Wissenschaft mit dem gleichen tödlichen Gift

9 wie der fundamentalistische blinde Mönch aus dem Namen der Rose.

10 Kurzum:

11 Forschung und Lehre müssen frei sein!

12 Diese unersetzliche Freiheit zu achten und nicht zu missbrauchen,

13 ist Aufgabe aller.

Figure 6 – Manual subtitles for a section starting at 10:33 of "Rede des Bundespräsidenten auf der HRK",
Dr. Frank-Walter Steinmeier, 18.11.2019. URL: (https://lecture2go.uni-hamburg.de/l2go/-/
get/v/25345).

words, especially anglicisms such as "Identifier" are misrecognized ("Identity Feier"). In Figure
5 and Figure 6 we compare a speech from president Dr. Frank-Walter Steinmeier with a more
broad topic. The quality of the automatically generated subtitles is better in this example. We
note some issues that inflate our WER measures, e.g. short interjections being found by our
system (‘Eben.’), and typos in the manual subtitles (‘realtionalen’).
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Figure 7 – Computation time needed for all processing steps for different video and beam sizes. Timings
were measured on one core of an Intel server CPU (Xeon E5-2620 v4).

Figure 8 – WER on the Lecture2Go test set, depending on the beamsize.

4.2 Decoding speed

Decoding speed depends on many factors and for some there is a trade-off between speed and
accuracy. In the following we report results for tuning the beam size of the ASR decoder with
the default model size of kaldi-tuda-de (3.5GB), while using the default options of Subtitle2Go
otherwise. In Figure 7 we plot the complete computation time needed for a particular video
length, including startup and loading times. The run times were measured on an Intel Xeon
E5-2620 v4 CPU (2.10GHz) using one core, with Kaldi linked against Intel MKL. As can be
seen in the figure, compute time grows linearly with video duration. In Figure 8 we show WER
on the Lecture2Go test set with the same beam sizes. Since there is little WER improvement for
beam sizes larger than 13, but computation time increases considerably, we settle on 13 as the
default. Using this setting a 35 minute video took 7m16s of computation time for all processing
steps. This yields a real-time factor of 0.2 and a full 90-minute lecture could be subtitled in 20
minutes (i.e., before the next lecture period starts). While there is no parallelization beyond the

133



vectorization of the Intel MKL BLAS operations, multiple videos can be decoded at the same
time with multiple cores.

5 ASR model adaptation

We identified OOV to be an issue in some lectures, that may use many technical terms or loan
words. While the 683,000 word vocabulary of the generic ASR model covers a wide range of
diverse topics, some technical terms will still be missing from this predefined vocabulary and
can not be recognized at all. Additionally lecture-specific information should also yield better
word transition probabilities.

For more generic terms and terms where we expect automatic grapheme-to-phoneme (G2P)
conversion to fail with phonetic lexicon entries (e.g. anglicisms in German, see [15]), we use
speech-lex-edit6, a lexicon editor with active learning and text-to-speech (TTS) feedback. With
texts from the target domain, we can rank OOVs by their frequency, as well as the G2P model
confidence values, in order to focus the manual work on phonetization. Furthermore we use
pdfplumber7 to extract text snippets from accompanying lecture slides. These are added to the
language model, as well as to generate automatic phonetic lexicon entries with G2P. Our process
for adaptation is not yet fully automated. We gather snippets from multiple lecture PDFs and
recompute the LM and the Kaldi FST (keeping the acoustic model), which requires several hours
of computation time. We hope to extend this paradigm into a more dynamic process, where
ideally the model can be adapted much quicker and also be adapted on a per-lecture basis.

We adapted our model with text snippets from 200 PDFs from various lectures. Unfortunately
there were only three videos in our test set where PDF slides were available. For one video we
could reduce the OOV rate significantly from 3.1% to 1.8%, also reducing WER from 45.03 to
43.98. However, on the whole test set OOV was only slightly reduced from 3.02% to 2.99%.
Also overall WER increased from 26.33 to 28.82 with the adapted model.

6 Conclusion
We presented the fully open-source subtitling solution Subtitle2Go, and evaluated its performance
on German lecture videos. In many cases, we obtain good and useful subtitles. Depending on
the quality of the recorded audio, the subtitles can be used as is on a video platform or serve
as a basis for further manual editing. While our intermediate goal was to support automatic
subtitles on the Lecture2Go platform, with predominately German content, extending support
to additional languages is straightforward. For many languages, Kaldi nnet3 models can be
readily downloaded and/or training recipes exist. Spacy supports syntax parsing for 16 languages
with pre-trained models. If both a Kaldi model and syntax parsing are available for a language,
the only additional component required is punctuation reconstruction. This can be trained with
crawled text and does not need further annotation. Additionally, a text normalization library or a
TTS frontend are helpful, if available.

We currently rely on the ASR model to disregard non-speech, which works sufficiently well
for lecture recordings. A full subtitling system might need to include diarization and/or voice
activity detection, to improve robustness when non-speech segments are present and speakers
change frequently (e.g., for automatic subtitling of movies).

Acknowledgements. We would like to thank the Lecture2Go team at Universität Hamburg for the collabora-
tion, their support and testing of our prototype, as well as the ongoing integration. We also thank the student project
on subtitling lecture videos in 2016 for their testing of different strategies to break long subtitles.

6https://github.com/uhh-lt/speech-lex-edit
7https://github.com/jsvine/pdfplumber
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