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Abstract: We investigate the e↵ect of the transfer learning procedure on e2e Au-
tomatic Speech Recognition systems using a limited amount of data. We use a
DeepSpeech inspired base-line in our experiments and based on di↵erent transfer
learning techniques. Our experimental results indicate the benefit of the augmented
progressive transfer method in minimizing the over-fitting and improving the accu-
racy.

1 Introduction

The ever-growing number of voice assistants, auto-captioning, and voice-search tools relies on
one critical component: automatic speech recognition (ASR). Classical ASR systems consist
of complex, heavily engineered approaches and require specialized input features and acoustic
models [1]. Improvement of such a pipeline requires domain experts’ considerable amount of
time. In recent years various architectural enhancements in deep neural networks contributed to
substantial progress within many research fields including ASR [2].

Nowadays, state of the art speech recognition performance on scientific data-sets is achieved
by some end to end (e2e) models using deep learning [3], such as DeepSpeech [4, 5]. As with
all deep learning techniques, these models highly depend on data availability. Unfortunately,
this leads to problems in adapting e2e approaches to scarce/low-resource languages.

Transfer learning provides a promising approach in this direction [6, 7]. However, the
naive way of adapting all weights of neural networks for a small amount of data allows signifi-
cant changes in the learned feature characteristics and leads to over-fitting [1]. Mirsamadi and
Hansen [8] propose to add a linear layer for solving this problem, whereas Sainath et al. [9]
suggest adding a second decoder for the constrained-based training [10]. Though, they require
some modifications to the base model.

In this paper, we propose a progressive transfer method for transfering an ASR model from
a source to a target language. The method only allows layer-by-layer adjustment so the pre-
trained network is only updated starting from the last layer during the transfer learning phase.
The source language performance is used as a regularizer during weight modifications on the
current layer. The previous layer is only allowed to be updated with a lower learning rate
after reaching the mutual best results on both source and target language on the current layer.
Since capturing enough characteristics from the target language is playing a critical role during
transfer learning, a data augmentation method [11] is added during this phase.

We present our results from the experiments that are conducted on English and German
data-sets showing the e�ciency of the progressive transfer learning method. The results give
insights on to what extend features learned from English data can influence German training in
both time and accuracy. Section 2 summarizes the methods that are used in the design of the
network and training, and Section 3 outlines our experiment design and results are shown in
Section 4, and finally paper is concluded in Section 5.
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2 Methods

2.1 Model

Figure 1 – Experimental End-to-End System Design with all components, First the raw audio is pro-
cessed to Mel-spectrogram, Then the data Augmentation component applies some deformations. Deep-
speech module processes deformed Mel-spectrogram to a character transition matrix, That finally used
to decode with or without a language model the most probable transcript.

Our model, shown in Figure 1, inspired by Deepspeech [4, 5], is a recurrent neural net-
work (RNN) that generates character sequences transcription from Mel-Spectrograms. Each
training example is formulated as (xi,yi) that correspond to a single utterance xi and its label yi
respectively, which is sampled from dataset X = {(x1,y1), (x2,y2), ...}. xi, is a time-series vector
of length Ti that encodes the audio features in each timestep. Mel-spectrogram’s features are
used as our input, so xi(t, p) denotes the p’s frequency bin power in the audio frame at time t.
the model then produces a sequence of character probabilities as transcription candidates for the
input spectrogram, where the output at each timestep is calculated as ŷ(t)= P(ct|x),c 2 Alphabet.

The Model has a six-layer architecture, where the first three layers are feed forwards, then
follows a unidirectional LSTM [12] layer followed by two additional feed-forward layers. We
denote individual layer l, where h(l) is the output of layer l, knowing that h(0) corresponds to
an input.

All of the non-recurrent layers operations are represented by equation 1, knowing that the
first layer, h0

t corresponds to the spectrogram frame xt.

h(l)
t = g(W(l)h(l�1)

t +b(l)) (1)

The parameters W(l) and b(l) in the equation 1 are representing the weights and biases for the
corresponding layer. After that, the clipped rectified-linear unit (ReLu) is used as the activation
function denoted as g(z) = min{max{0,z},20}.

The fourth layer is a unidirectional LSTM layer, which is represented in equation 2, Where
the LSTM function is described at [12]

h(4)
t = g(LS T M(h(3)

t ,h
(4)
(t�1),C

(4)
(t�1))) (2)

the predicted character probabilities for each time slice t and character k in the alphabet is
calculated by applying softmax to the final layer as represented in equation 3

ŷt,k ⌘ P(ct = k|x) =
exp(h(6)

t (k))
P

j2J exp(h(6)
t ( j))

(3)

Finally, we use CTC [13] to measure the loss L(ŷ,y) between the predicted character prob-
abilities ŷ and the ground truth y with respect to the network outputs and backpropagate the
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gradient rL(ŷ,y) to all of the model parameters through the rest of the network.

2.2 Data Augmentation

Diversity of the augmentation helps the network to learn better features and also minimizes
the over-fitting risk [14]. Mel-Spectrograms are used as input to our network; we apply defor-
mations on those features to provide the capability to enrich the data during the training time.
Augmentation deformations should be including segment-based time and frequency masking
as presented in [15]. The following operations are applied as data augmentation during our
training procedure.

1. Time warping views the Mel-Spectrogram as an image where the time axis is horizontal
and the frequency axis is vertical with ⌧ time steps, and it is applied by choosing a random
point along the horizontal axis in the temporal segment (W,⌧�W) and the direction of
warping either to the left or to the right. Additionally, warping distance w is sampled
from a uniform distribution with a mean of 0 and a standard deviation of W.

2. Frequency masking masks f consecutive Mel-frequency channels [ f0, f0+ f ), where f0 is
chosen from [0,3� f ), and f is sampled from a uniform distribution with a mean of 0 and
a Standard deviation of F. 3 is the number of Mel-frequency channels.

3. Time masking masks t consecutive time steps [t0, t0+ t), where t0 is chosen from [0,⌧� t),
and t sampled from a uniform distribution with a mean of 0 and a standard deviation of
T .

2.3 Language Model

The perceived performance of the ASR system depends on both acoustic and language models.
Measuring the added value of the acoustic model in the overall accuracy is another criterion
for our experiments. We employ a probabilistic language model to be able to observe this. In
particular, and we selected KenLM [16, 17] because of its scalability, short query time, and
memory e�ciency.

3 Setup

In this paper, we try to investigate the e↵ect of the training procedure on transfer learning. Lack
of data in the target language and a large parameter space cause over-fitting and reduce perfor-
mance. Therefore, our experiment setup focuses on observing the individual regularization’s
e↵ect on the transfer. For this purpose, we start from a "full transfer learning" as a baseline,
which allows unconstrained training for all of the layers. Then we observe the e↵ect of the
following options.

The first option in our experiments is "mean transfer learning" . In this setup, we freeze
feed-forward layers before LSTM and only allow the training on the rest of the model. In this
experiment, we aim to observe the e↵ect of previously extracted features with the combination
of the newly learned temporal feature relations.

The second option in our experiments is "gradual transfer learning" . It is sequentially
allowing the layers to be trained and unfreezing a layer once its successor is converged. This
experiment is designed to capture the information gain from the trained source language and
the e↵ect of sequentially allowing the injection of the target language data to those layers. In
this case, we are keeping the learning rate stable.
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The final option in our experiment is "progressive transfer learning", we follow the same
procedure as in the previous one except that the learning rate is reduced progressively.

Each experiment described above looks at the problem from a training procedural regu-
larization perspective, and the complementary method is data augmentation. Therefore all the
experiments described above were also conducted with frequency masking, time warping, and
time masking data augmentations combined to observe their e↵ect on training.

3.1 Resources

3.1.1 Data

Figure 2 – CV data distribution per geographical location, gender, and age groups in respective order

The Common Voice [18] (CV) is a community e↵ort open-source data-set that is under
active development and maintenance by Mozilla. It is a multilingual collection, and its latest
version contains 59 di↵erent languages, which aims to help improving speech technology rele-
vant research and the development of the tools. Fundamentally the idea is crowd-sourcing the
utterances collection and validation processes for ASR. Already having collected tens of thou-
sands of utterances and considering the variety of languages makes it an adequate candidate for
other tasks besides ASR. To the best of our knowledge, it is both the largest and most diverse
audio data-set in terms of collected hours and regarding the number of speakers in the public
domain for ASR tasks.

3.1.2 Baseline system

The baseline model in our experiments is inspired by DeepSpeech [4], which was described
in section 2.1. It maps each 32 log mel spectrogram features to alphabet characters probabil-
ities. All layers are consisting of 2048 hidden nodes. 40% dropout ratio is used except for
the LSTM layer and the layers following it. The model was trained iteratively for a total of
325 epochs without early stopping while gradually reducing the learning rate on Fisher, Lib-
riSpeech [19], Switchboard [20], Common Voice English, and approximately 1700 hours of
transcribed WAMU (NPR) radio shows used as training corpora. During the training, the learn-
ing rate was gradually decreasing by the ratio of 0.1 after every 100 epochs. Finally, the model
was optimized using ADAM Optimizer [21].

3.1.3 Hyperparameters

Our experiments can be categorized into four types namely "full transfer learning", "mean trans-
fer learning", "gradual transfer learning" and "progressive transfer learning". Additionally, each
of the experiment types is further parametrized with and without augmentation and a language
model. In each of the experiments, the optimizer is Adam. Language Model weight is 0.93,
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and word insertion weight is 1.18 for the language model enabled experiments. Three intervals
each with two frequency bandwidths masking are used for frequency masking. Three intervals
each with ten milliseconds windows are used for time masking. 10% stretching/squeezing is
applied to random consecutive blocks as bi-cubic time warping in data augmentation enabled
experiments. The CTC’s beamwidth value is 1024, the batch size is 128, and the number of
training epochs is 75. An early stop was not used in full and mean transfer experiments, but
learning rate decay is enabled with the sensitivity of 0.05. Ten epoch patience and 0.05 sensitiv-
ity early stop is used in gradual and progressive transfer learning experiments to unfreeze layers
iteratively. Additionally, the learning rate is halved for each opened layer in the progressive
transfer learning experiment.

4 Results and Discussion

w/o A, w/o L w A, w/o L w/o A, w L w A, w L
Full 0.28599 0.275194 0.232108 0.231583

Mean 0.289109 0.26781 0.259603 0.220897
Gradually 0.285466 0.270942 0.221055 0.214099
Progressive 0.283566 0.269247 0.222753 0.207041

Table 1 – Character Error Rates for each individual Transfer Learning Procedure

Table 1 shows character error rate (CER) for the transfer learning experiments with the
learning rate 0.0001.

Figure 3 – Learning Rate 0.0001 - Test Results for Progressive and Gradual with/with out Language
Model and Augmentation. Individual numbers on trainable layers represent the allowed layers during
training in reverse order.

Figure 3 shows the results on both gradual and progressive transfer methods with the al-
lowed trainable layers for all four combinations of using language model and augmentation.
Consistently, progressive transfer learning has a positive margin over the gradual transfer learn-
ing method. Augmentation shows improvement as well in both language model enabled and
disable modes. As noticed CER is comparable between mean and full transfer: this indicates
that the features learned by earlier layers for the English language can be used without further
change for the German language. Additional experiments were carried out with a variety of
learning rates as presented by the diagrams shown in the appendix to support the consistency of
the reported behaviors.
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5 Conclusions

In this paper, we investigated the e↵ect of augmented progressive transfer learning by the exper-
imental comparison of this approach to gradually, full, and mean transfer learning methods on
English to German Languages. In our experiments, we consistently achieved marginal improve-
ment compared to other methods. Knowing that the German language does not count as a low
resource language, we used a small amount of data to emulate the behavior. Yet the question of
applicability on more languages, dialects, geographics are still open question for investigation,
as well as the determining the right amount of data for transfer.
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Appendix Further Experiments

The following figures show the results of conducted 224 experiments on the proposed method
with di↵erent learning rates. Figure 4 indicates that having a high learning rate lowers the
performance once the first layer is allowed to be trained.

Figure 4 – Learning Rate 0.001 - Test Results for Progressive and Gradual with/with out Language
Model and Augmentation. Individual numbers on trainable layers represent the allowed layers during
training in reverse order.

Figure 5 – Learning Rate 0.00001 - Test Results for Progressive and Gradual with/with out Language
Model and Augmentation. Individual numbers on trainable layers represent the allowed layers during
training in reverse order.

Figure 6 – Learning Rate 0.00005 - Test Results for Progressive and Gradual with/with out Language
Model and Augmentation. Individual numbers on trainable layers represent the allowed layers during
training in reverse order.
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