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Abstract: Silent speech recognition (SSR) is an active area of research with 
applications ranging from speech restoration to speech enhancement. Radar-based 
SSR has been proposed and investigated as a non-invasive method to infer vocal tract 
states and articulatory movements from measured changes in scattering parameters. 
One of the challenges in developing a radar-based SSR system is to determine the 
optimal set of features from these measurements. In this study, we therefore 
investigated the following problems: (a) The selection of the features that play the most 
significant role for classification. (b) The determination of the contribution of each 
reflection and transmission spectrum and the most important frequencies. (c) The 
determination of the performance of the classifiers when using fewer features. (d) The 
determination of the robustness of the classifiers against different noise levels. The 
data used in this study consisted of 230 samples of 25 German phonemes (15 vowels, 
each in 10 contexts, and 10 consonants, each in 8 contexts) produced by two German 
native speakers. Using the full feature set, a Linear Discriminant Analysis (LDA) 
classifier achieved up to 94 % classification accuracy for speaker 1 and 84 % for 
speaker 2. Using only the most important features as identified by a decision tree, the 
classification accuracy deteriorated slightly in most conditions, but in one case 
improved the accuracy from 73.5 % to 81 %. Regarding the robustness against noise, 
the accuracy of the LDA dropped sharply with increasing noise levels, while the 
decrease of the SVM’s accuracy was less steep. 

1 Introduction 
Silent speech recognition (SSR) is an active research area to restore and enhance human speech 
without any acoustic signal from a speaker [1, 2]. With the help of silent speech recognition 
devices, it is possible to determine vocal tract states and thus recognize speech. In the medical 
domain, for people who have lost their larynx or otherwise cannot produce speech 
conventionally, SSR devices are promising communication tools. Silent speech recognition may 
be useful in noisy environments where automatic speech recognition does not work well [3]. 
SSR could also be used as a new input modality for everyday devices. Several studies have 
recently been carried out to develop a safe and convenient system that collects data from radar 
and other sensors as input sources [4-7].  

For articulatory movement recognition, multiple types of sensors were used in the 
literature. These sensors consist of image sensors [8], electromyography (EMG) [9, 10], 
electromagnetic articulatory (EMA) [11, 12], permanent magnet articulography (PMA) [13] 
and electro-optical stomatography (EOS) [14, 15]. Most of the mentioned methods have their 
individual drawbacks, including invasiveness, session dependence, sensibility to sensor 
placement, and others. A very promising sensor technology employs non-invasive ultra-
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wideband radar (UWB) sensors. Radar pulses penetrate the skin and the underlying tissue so 
that intra-oral vocal tract configurations can be captured from the outside [16-18]. 

However, only a few studies examined the potential of these radar sensors for silent speech 
recognition. Holzrichter et al. were the first ones to utilize a radar sensor to recognize variations 
of the vocal tract shape in 1998 and proposed to use these sensors in SSR devices [19]. More 
recently, Eid and Wallace [20] used a single radar sensor to detect 10 different digits and 
ascribed great potential to this method. Shin and Seo [21] studied ultra-wideband (UWB) radar 
sensors with two antennas to detect 10 isolated words and classified each word with an average 
accuracy of 85 %. Birkholz et al. [16] also presented a UWB articulation sensing system (2-12 
GHz) that utilized two radar antennas placed below the chin and on the cheek of two speakers. 
The measured scattering parameters were used to classify different German phonemes and the 
results showed a 93 % and 85 % recognition rate for the two different speakers. Here, the 
features were the spectral coefficients of the transmission and reflection spectra with a total 
number of 1206. The role of each individual feature for the classification performance remained 
uninvestigated.  It is also interesting to investigate the efficiency of the classifiers when using 
fewer than the 1206 features, and the robustness of the classifiers against different levels of 
noise. 

In this study, we built on the work in [16] and used the same set of recordings. To reduce 
the number of features, a decision tree was used. Two established pattern recognition methods, 
Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM), were used to assess 
the classification accuracy. In the last section of this paper, the influence of different signal-to-
noise ratios was examined. 

2 Experimental setup and data set 
The system employed two modified antipodal Vivaldi antennas attached below the chin and on 
the right cheek [16, 22]. During a measurement, both antennas were used to transmit and receive 
a frequency sweep from 2 to 12 GHz. S-parameters (scattering parameters) were used to 
describe how energy can propagate through a network. A network analyzer (PNA Series 
Network Analyzer E8364B by Agilent Technologies) recorded the reflection spectrum of each 
antenna and the transmission spectrum between the two antennas and calculated the scattering 
parameters in terms of complex spectra. As described in [16], most of the information is 
contained in the magnitude spectra. Therefore, only the magnitude spectra were used as features 
and the phase information was discarded. Each of the three-recorded spectra (one transmission, 
two reflection) consisted of 201 frequency points, hence the number of features was 603. 

Two German native speakers were asked to record two complete sets of utterances 
(sustained speech sounds), both in a single session. A set consisted of 230 samples of 15 vowels 
(/aː, eː, iː, oː, uː, ɛː, øː, yː, ɪː, ɛ, a, ɔ, ʊ, ʏ, œ/), each in 10 different symmetric consonantal 
contexts, and 10 consonants (/b, d, g, l, ʀ, f, s, ʃ, m, n/), each in 8 different symmetric vowel 
contexts. Due to the acquisition time of the network analyzer, each target phoneme was 
sustained for 3 seconds. In summary, the data set of each speaker included two sets of 230 
observations with 603 feature dimensions for 25 different phoneme classes. 

3 Feature selection 
While the results from the pilot study in [16] were already quite convincing as a proof-of-
principle, the high input dimensionality is problematic for two reasons: It may limit the 
performance of a classifier (due to the curse of dimensionality) and it requires a long signal 
acquisition time, because each frequency component is measured individually. If a smaller, 
salient subset of these features could be identified, it would enable the use of a more specific 
stepped-frequency sweep to only measure at the important frequencies in much shorter time. 
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Therefore, we used a decision tree as a feature selection technique to identify the most important 
spectral components for classification. 

Feature selection methods try to select the best subset of features, which have the most 
significant role in classification and omit the redundant attributes from a data set. In addition, it 
would determine the features (or some sections or frequency bands) that a classifier relies upon. 
This gives us a chance to identify the subset of features that is essential to separate the phoneme 
classes. 

 

Fig.1: A part of the decision tree. Each node selects a feature to split the classes based on Gini Diversity Index 
(GDI). The leaf nodes correspond to the classes (phonemes). 

The decision tree is one of the most well-known and simplest feature selection algorithms. 
It determines those features that play a role for discrimination and discards the others [23]. A 
decision tree tries to split classes with the minimum amount of classification error based on a 
Standard CART (Classification And Regression Tree) predictive model. In each node, to select 
the best split feature, the Gini Diversity Index (GDI) is used [24, 25]. The Gini Diversity Index 
is the split criterion to illustrate a node's impurity: 

1 −  ∑ 𝑝𝑖
2

𝐶

𝑖=1

 

Here, 𝐶 is the number of classes at the node, and 𝑝𝑖 is the observed fraction of classes with 
class 𝑖 that reach the node. A high purity of a node is associated with a low GDI.  

This method is implemented in MATLAB R2019b in the fitctree function to fit a 
binary decision tree for multiclass classification. The process of creating a decision tree was 
repeated 30 times. For each run, a stratified holdout set of 10 % of the observations in each set 
was used for the final evaluation of the tuned classifier’s accuracy. The remaining 90 % were 
used to build the decision tree and to train and tune the classifier in a cross-validation scheme. 
A part of the tree for speaker 1 is shown in Fig.1. 

To determine the importance of each feature at each node (contribution weight), the 
corresponding mean square error (MSE) was calculated. At the end of the splitting process, the 
summation of MSE for each feature was divided by the number of branch nodes and determined 
the importance of each selected feature.  
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The average contribution weight of each selected feature in the decision trees is illustrated 
in Fig. 2. In Fig. 2 (a) the number of selected features for each spectrum is shown for the first 
repetition of speaker 1(176 features were selected). It can be seen that the most frequently 
selected features (92) were coefficients of the reflection spectrum of S11, and 49 features were 
selected from the transmission spectrum between the two antennas (S21). Also, in the reflection 
spectra (S11 and S22), the whole frequency band (2-12 GHz) was equally important, but for the 
transmission spectrum (S21) mostly the lower frequency range was important.  

Fig. 2 (b) shows the cumulative sum of weights for each spectrum. For the transmission 
spectrum (S21), over 80% of the significant features, were in the 2-7GHz frequency band. For 
the reflection spectra (S11 and S22), this frequency band included only 60% and 40% of the 
selected features, respectively. In all three spectra, the initial part of the frequency band (2-
3GHz) contained over 40% of the important features. The number of selected features were 
146 for the second repetition of speaker 1. For the second speaker, the reduced feature subset 
contained 188 and 223 features, for the first and second repetition, respectively

 
Fig.2: Feature importance; (a) the contribution weight of each feature, (b) the cumulative sum for each spectrum. 

4 Classification experiments 
To evaluate the impact of the feature selection on the classification accuracy, a Linear 
Discriminant Analysis (LDA) and a Support Vector Machine (SVM) were implemented. These 
methods work well with small data sets and have no (LDA) or only two (SVM with Gaussian 
kernel) adjustable hyperparameters. Each classifier was trained and evaluated in a speaker-
dependent fashion using only a single data set from each speaker at a time.  

x Linear Discriminant Analysis determines a set of basis vectors that discriminate class 
samples. These vectors have the minimum within-class variances and maximum 
between-class variances to guarantee an optimal separation of the classes. Particularly, 
LDA is a supervised learning model with no hyperparameter [27]. Here, we used the 
LDA implemented in the MATLAB R2019b function fitcdiscr using its default 
settings. 

x A Support Vector Machine finds a hyperplane that separates two classes in an optimal 
sense by maximizing the margin between the hyperplane and the support vectors [28]. 
This is extended to multiclass classification using a one-vs-one design in the function 
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fitcecoc in MATLAB R2019b. For the nonlinear transformation of the features, a 
Gaussian kernel was used. The soft margin constant (𝐶) and the kernel scale (σ) are the 
only two hyperparameters tuned in this study. These hyperparameters were determined 
by the internal optimization function in fitcecoc. 

The classification accuracy for both speakers using LDA and SVM with the entire feature 
set and the reduced feature sets are shown in Table 1. For both recorded sets of speaker 1, all 
classifiers performed worse when using reduced feature sets. The best results were achieved by 
an SVM with a Gaussian kernel, which exhibited a loss of only 1.12% of accuracy with using 
only 172 of the 603 original features. For the second speaker this feature selection condition 
even outperformed the results on the full feature set for all classifiers. The classification 
accuracy of the SVM (linear kernel) when using only 32% of the original features reported the 
highest increase from 73.5 % to 81 %. The accuracy of LDA and the SVM (Gaussian kernel) 
increased by 3.04% and 6.96%, respectively. 

Table.1: Classification accuracy of full and reduced feature sets with two different classifiers on the 
radar silent speech datasets. “Mean” and “Std Dev” indicate the average and standard deviation across 
all test set over 30 runs, respectively, and “NF” in parentheses means the number of the selected features 
over 30 runs. 

Dataset LDA SVM (linear kernel) SVM (Gaussian kernel) 

 Baseline Selected 
features Baseline Selected 

features Baseline Selected 
features 

 Mean ± Std 
Dev 

Mean ± Std 
Dev (NF) 

Mean ± Std 
Dev 

Mean ± Std 
Dev (NF) 

Mean ± Std 
Dev 

Mean ± Std 
Dev (NF) 

Speaker 1 
repetition 1 

93.84% ± 
3.97 

90.64% ± 
5.92(176) 

92.48% ± 
4.95 

89.36% ± 
6.02(176) 92% ± 5.11 90.88% ± 

5.60(176) 

Speaker 1 
repetition 2 

90.32% ± 
5.55 

86% ± 
6.52(146) 

90.40% ± 
5.05 

81.04% ± 
7.87(146) 

89.52% ± 
5.59 

82.56% ± 
6.85(146) 

Speaker 2 
repetition 1 

84.32% ± 
7.39 

86% ± 
6.52(188) 

73.52% ± 
8.11 

81.04% ± 
7.86(188) 

75.6% ± 
8.41 

82.56% ± 
6.85(188) 

Speaker 2 
repetition 2 

75.28% ± 
7.16 

78.32% ± 
6.71(223) 

67.36% ± 
8.17 

69.12% ± 
8.71(223) 

69.12% ± 
6.81 

70.16% ± 
8.36(223) 

5 Robustness against noise 
To evaluate the robustness of the tested classifiers against background noise, the test data passed 
through white Gaussian noise channels for signal-to-noise ratios (SNR) of 5 dB to 50 dB in 5 
dB steps. For both speakers, the selected feature sets were used and the results are shown in Fig. 
3. It is evident that the SVM family showed better robustness against external noise sources 
(with very little loss of accuracy down to around 20dB) while the LDA’s accuracy dropped 
severely at an SNR of 35 dB or lower. 
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Fig. 3: Robustness of classifiers against different amount of noise; (a) classification accuracy for speaker 1 (first 
repetition) using the selected features (176), and (b) classification accuracy for speaker 2 (second repetition) 

using selected features (223). 

6 Discussion and conclusion 
This study tried to find the best subset of features of a high-dimensional feature vector using a 
decision tree and showed the importance of each feature for classification. In the previous study 
[16], it was investigated that the first half of the frequency band for each spectrum contained 
the most important features for phoneme classification. By using a decision tree, it was shown 
here that for the reflection spectra, the whole frequency band is important, and for the 
transmission spectrum over 60 % of important features are in the 2-3 GHz range. Hence, there 
is great potential to reduce the number of features as evidenced by the fact that the decision tree 
selected less than 37% of the features to build the tree. Using SVMs with different kernels, it 
can be expected to find even more complex relationship among features to classify the 
phonemes even better. By using the complete feature sets for the first speaker, SVM with linear 
and Gaussian kernel classified phonemes with the same accuracy as LDA, but for the second 
speaker, SVM scored lower than LDA. The overall accuracy of both classifiers for the second 
speaker dropped by over 10 %. By using selected features, the classification accuracy of all 
classifiers increased for the second speaker. This showed the existence of some irrelevant 
features in the original feature sets of the second speaker. No dental problems were reported by 
the first speaker, while the second speaker has a metal dental implant and four metal tooth 
fillings, which are likely to impede the penetration of the microwaves through the articulatory 
system. In the last part of the study, as noise was added to the test set, SVM with different 
kernels was the most noise-tolerant learning algorithm. Future work includes testing other 
feature selection techniques as well as dimensionality reduction techniques, e.g. evolutionary 
algorithms [29], and implementing a deep neural network to train with a larger amount of data 
from different speakers.  
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