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Abstract: Audio-visual speech recognition can improve the recognition rate in
many small-vocabulary tasks. But for large vocabularies, due to difficulties like
unsatisfactory lipreading accuracies, improving the recognition rate over audio-
only baselines remains difficult. In this work, we propose a new fusion strategy,
which fuses the state posteriors of separate stream recognizers through a bidirec-
tional LSTM network. Our proposed fusion strategy outperforms all baselines as
well as oracle dynamic stream-weighting, which gives a theoretical upper bound
for dynamic stream-weighting approaches. The proposed system achieves a rel-
ative word error rate reduction of 42.18% compared to the audio-only setup and
34.73% compared to the non-oracle dynamic stream-weighting baseline.

1 Introduction

Audio-visual speech recognition (AVSR) was inspired by the natural ability of humans to in-
tegrate visual information in their speech perception. People often unconsciously focus on the
speaker's lips in a noisy environment, and even in clean speech, seeing the lips of the speaker in-
fluences perception, as demonstrated by the McGurk effect [1]. Many machine AVSR systems
exist, which mimic this ability and show promising results for small-vocabulary tasks [2, 3, 4].
However, for large-vocabularies, some words are virtually indistinguishable to a lipreading
model, e.g. "do" and "to". These lead to a somewhat depressing performance of purely vi-
sual lipreading LV models and, hence, an inherent difficulty of AVSR on large-vocabulary tasks
[5, 6].

In contrast to early and late integration, the idea of decision fusion, such as dynamic stream-
weighting, provides an effective method to integrate the audio and video information. Different
from decision fusion, which combines the decisions of multiple classifiers into a common deci-
sion, an alternative idea is to fuse representations, e.g. via multi-modal attentions [7]. Another
example using this idea is that of gating, e.g. in [8] or in [9], where a newly designed Gated
Multimodal Unit (GMU) is used for dynamically fusing feature streams within each cell of a
network. Alternatively, [10] suggests the use of deep feedforward sequential memory networks
(DFSMN) to firstly create and secondly fuse audio and video representations.

In this work, we combine the ideas of representation fusion and decision fusion, namely,
using the posterior probabilities for states s and observation o, of i = 1...M single-modality
hybrid models p(s|o}) as our representation of the uni-modal streams. A wide variety of reli-
ability indicators are extracted as auxiliary inputs to boost the integration model performance.
To evaluate our proposed model, we use an open source large-vocabulary English dataset—
the LRS2 corpus [11]—for all experiments. Our experimental results show that our proposed
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fusion strategy can notably improve the recognition rate of clean audio data from low-quality
video streams.

In the following, we compare our proposed fusion strategy with different baseline models,
which are introduced in Section 2. Section 3 describes the new fusion approach. The set of reli-
ability measures that it employs are described in Section 4. Section 5 explains the experimental
setup. In Sections 6 and 7, we discuss the experimental results and give an outlook on future
work.

2 Related work

Many different fusion strategies can improve the recognition accuracy for AVSR. Here, we give
a brief introduction of the fusion strategies that are used as baseline models in this work. In the
following, we consider M = 3 single-modality models, one acoustic and two visual.

2.1 Early integration baseline

Early integration fuses the audio and visual information at the level of features via

o = [(o)", (0,°)", (0] (1)

Here, superscript T denotes the transpose, 0/, 0, and 0,”> are audio features, shape-based,

and appearance-based video features, respectively, described in more detail in Section 5.2.

2.2 Dynamic stream-weighting

Due to its high effectiveness, dynamic stream-weighting is often used as the fusion strategy in
AVSR. Here, we therefore employ dynamic stream-weighting as in [12] as the second multi-
modal baseline, carrying out a weighted combination of stream-wise DNN state posteriors ac-
cording to

log p(s|o;) = Z)L,i-log p(slol). (2)

Here, the stream weights A/ are estimated by a feedforward network from the extracted reliabil-
ity measures. p(s|o}) is the state posterior of state s at time ¢. For dynamic stream-weighting,
we consider the mean square error (MSE) and the cross-entropy (CE) as loss functions.

2.3 Oracle weight baseline

We also consider oracle stream-weighting as a baseline. In the decoding phase, its dynamic
stream weights are computed by minimizing the cross-entropy over the ground-truth forced
alignment information, so a known text transcription of the test set is the prerequisite for this
method. To optimize the cross-entropy in Eq. (4), we use convex optimization via CVX [13,
14]. The obtained oracle stream weights are then used to calculate the estimated log-posterior
through Eq. (2). The oracle stream-weighting baseline gives the best achievable upper bound of
recognition rate for a stream-weighting-based recognition system.

3 System overview

Figure 1 shows the proposed decision fusion network (DFN). The estimated log-posterior prob-
ability vector at time ¢ is

log p(s|o;) = DEN([p(s|o)T, p(s|oy™)T, p(s|oy>)T,RTTT), 3)
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Figure 1 — Audio-visual fusion via the DFN, applied to one stream of audio and two streams of different
video features

where R; is the vector of reliability measures at time ¢, described in more detail in Section 4.
The DFN architecture and training is introduced in Section 5.3.
The cross-entropy is used as the objective function to train the DFN:
1 T

Zex=—= Y, p'(slon)" -log p(slo). x
=1

where p*(s|o,) is the one-hot vector of target state probabilities, obtained by forced alignment
on the clean acoustic training data.

4 Reliability measures

In many studies [3, 4, 15], reliability information has shown its benefit for multimodal integra-
tion. In this work, we extract a broad range of reliability measures (see Table 1). They can be
grouped into model-based and signal-based measures. Most of them are computed as in [12].

Model-based Signal-based

Audio-based Video-based
* Entropy * MFCC
* Dispersion * AMFCC

* Confidence
« IDCT
* Image distortion

¢ Posterior difference SNR
» Temporal divergence|* fj
* Entropy and * Afo
dispersion ratio * Probability of voicing

Table 1 — Overview of reliability measures

The model-based measures are entropy, dispersion, posterior difference, temporal diver-
gence, entropy- and dispersion-ratio. The audio signal based reliability measures comprise the
first 5 MFCC coefficients with their temporal derivatives AMFCC. In this work, we use the deep
learning approach DeepXi [17] to estimate the frame-wise SNR. The pitch fy and its temporal
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derivative, Afy, as well as the probability of voicing [18] are also included as reliability indi-
cators. Signal-based reliability measures for the video data contain the Inverse Discrete Cosine
Transform (IDCT) and image distortion estimates, which comprise the lighting condition, the
degree of blurring, and the head pose. Same as in [12], OpenFace [16] is used for face detec-
tion and facial landmark extraction and the confidence of its face detector in each frame is also
considered as a visual-signal quality indicator.

5 Experimental Setup

5.1 Dataset

The Oxford-BBC Lip Reading Sentences (LRS2) corpus is used as the audio-visual dataset. Ta-
ble 2 gives an overview of the dataset size and partitioning. In clean conditions, acoustic speech
recognition is far easier than lipreading, which only comes into its own as an auxiliary informa-
tion source under some acoustic noise. To evaluate these contributions, we add acoustic noise
to the LRS2 database. The MUSAN corpus [19] ambient subset is used as the noise source.
Seven different SNRs are considered, from -9 dB to 9 dB in steps of 3 dB. We also generate
data for a far-field AVSR scenario, via convolutions with measured impulse responses, again
from the MUSAN corpus. Both these two augmentations use the standard Kaldi's Voxceleb
example recipe.

Subset  |Utterances|Vocabulary | Duration [hh:mm)]
pre-train set | 96,000 41,000 196:25
training set | 45,839 17,660 28:33

validation set| 1,082 1,984 00:40

test set 1,243 1,698 00:35

Table 2 — Size of subsets within the LRS2 Corpus

5.2 Feature extraction

The audio model uses 40 log Mel features together with two pitch features (fo, Afo) and the
probability of voicing, yielding 43-dimensional feature vectors. The audio features are extracted
with a 25 ms frame size and 10 ms frameshift. The video frame is 40 ms long without over-
lap. The video appearance model (VA) uses 43-dimensional IDCT coefficients of the grayscale
mouth region of interest (ROI) as features. The video shape model (VS) is based on the 34-
dimensional non-rigid shape parameters described in [16]. Since the audio and video features
have different frame rates, Bresenham's algorithm [20] is used to align the audio and video fea-
tures. This algorithm gives the first-order approximation, which is suitable to the audio/video
feature alignment problem.

5.3 Implementation details

All our experiments are based on the Kaldi toolkit [21]. Both pre-train and training sets are used
together to train the acoustic and visual models. The initial HMM-GMM training follows the
standard Kaldi AMI recipe. HMM-DNN training uses the nnet2 p-norm network [22] recipe.
After the Kaldi HMM-DNN training, the number of states in each stream is identical to 3,856.
We extract 41 reliability indicators in total. So in Figure 1, the input dimension is (3 x 3856 +
41) =11,609. The first three hidden layers have 8,192, 4,096, and 1024 units, respectively, each
using the ReL.U activation function and layer normalization (LN). They feed into 3 BLSTM
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layers with 1024 memory cells for each direction, using tanh as the activation function. The
dropout rate in Figure 1 is 0.15. Finally, a fully connected (FC) layer projects the data to
the output dimension of 3,856. A log-softmax function is applied to obtain the estimated log-
posteriors. We conducted two experiments with the proposed DFN strategy. One is the BLSTM-
DFN, exactly as described in Figure 1. The other is an LSTM-DFN, which replaces the BLSTM
layers by LSTM layers.

To avoid overfitting, we checked for early stopping every 7,900 iterations, using the val-
idation set. The training process is stopped, if the validation loss value does not decrease for
23,700 iterations (3 times early stopping checking). The initial learning rate is set to 0.0005 and
is reduced by 20% whenever the validation loss does not decrease in early stopping checking.
The batch size is set to 10. The DFN training is based on the PyTorch library [23] with the
ADAM optimizer. The BLSTM-DEN or LSTM-DFN model training via CUDA on a GeForce
RTX 2080 Ti GPU runs for approximately 15 days.

6 Results

-4 Audio-only Oracle weighting
60 - Early-integration —#— BLSTM-DFN

Figure 2 — WER (%) on the test set of the LRS2 corpus.

In this section, we compare the performance of different fusion strategies. Figure 2 com-
pares the results of our proposed BLSTM-DFN with the audio-only model as well as the differ-
ent baselines (more details can be found in Table 3). The proposed BLSTM-DFN can im-
prove the WER for every SNR, even for clean acoustic data, comparing to the audio-only
model. The model is also capable of achieving better results in many cases than the—realistically
unachievable—oracle weighting, which can be considered as the upper limit for the dynamic
stream-weighting approaches.

Table 3 lists all the results of our experiments under noisy conditions. The visual models
show average WERs over 80%, which exemplifies that lip-reading is still difficult for large-
vocabulary tasks. We assume that this is due to insufficient training data. We have also em-
ployed a spatio-temporal visual front-end [24] to extract high-level visual features, without
seeing improvements. Early integration (EI) and dynamic stream-weighting (MSE and CE) can
also improve the results. But comparing the average WER over all SNR conditions, it can be
seen that the proposed BLSTM-DEFN is greatly beneficial, outperforming not only all feasible
stream integration approaches but even oracle weighting. As mentioned in Section 5.1, we also
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considered the case of far-field AVSR. The BLSTM-DEFEN still outperforms the other fusion
strategies, but it is not as close to the OW. We suspect the reason is an insufficient amount of
reverberant acoustic training signals. Overall, in this work, the BLSTM-DFN shows a relative
WER reduction of 42.18 % compared to the audio-only system, while the LSTM-DFN yields a
relative WER improvement of 27.09 %.

SNR -9 -6 -3 0 3 6 9 clean avg. ‘reverb.
AO 48.96 41.44 33.07 30.81 22.85 18.89 16.49 10.12 27.83| 23.61
VA 85.83 87.00 85.26 88.10 87.03 88.44 88.25 88.10 87.25| 88.10
VS 88.11 90.27 87.29 88.88 85.88 85.33 88.58 87.10 87.68 | 87.10
EI 40.14 32.47 2396 26.59 20.67 16.68 14.76 10.02 23.16‘ 19.15
MSE 46.48 37.79 27.45 27.47 19.52 16.58 15.09 9.42 24.98| 19.54
CE 4579 37.14 26.32 28.03 19.40 16.68 14.76 9.42 24.65| 19.44
ow 30.33 2647 1541 21.25 13.66 11.66 1045 7.54 17.10| 12.70
LSTM-DFN 33.30 27.22 21.26 21.25 19.17 13.97 15.84 10.32 20.29 | 15.67
BLSTM-DFN 27.55 23.11 17.89 16.35 14.93 10.25 10.78 7.84 16.09 | 15.28

Table 3 — WER (%) on the LRS2 test set under additive noise. AO: audio-only model; VA: video ap-
pearance model; VS: video shape model; EI: early integration model; MSE: dynamic stream-weighting
with mean square error as objective function; CE: dynamic stream-weighting with cross-entropy as
objective function; OW: oracle stream-weighting baseline; LSTM-DFN: proposed model with LSTM
layers; BLSTM-DEN: proposed model with bidirectional LSTM layers; reverb.: far-field AVSR results.

7 Conclusion

In this paper, we propose a new fusion strategy for audio-visual speech recognition, namely
the decision fusion net (DFN), which considers the state posteriors of different streams as a
representation for fusion. It uses reliability indicators to help in the estimation of the optimal
combined state-posteriors. There are two flavors, a BLSTM-DFN with optimal performance,
as well as an LSTM-DFN, which provides the option of real-time decoding. In experimental
results on noisy as well as on reverberant data, our proposed model shows significant improve-
ments, with the BLSTM version achieving a relative word-error-rate reduction of 42.18% over
audio-only recognition and outperforming all baseline models. It is worth mentioning that the
DFN is even superior to the oracle stream-weighting on average, which provides a theoretical
upper bound for instantaneous stream-weighting approaches. The next goal of our work is to
focus on end-to-end audio-visual speech recognition models.
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