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Abstract: Comparing simulated articulatory movements to their real counterparts
is critical in establishing some trust in the findings produced by a simulator and the
simulator’s generalizability. Point-wise and global measures are compared in this
study on a dataset of human EMA recordings and resynthesised simulated EMA
data. Most measures show comparable sensitivity to the hypothesized structure of
dissimilarity along different groups of EMA trajectories but fail to fulfill metrical
properties. A measure based on the Jensen-Shannon-distance (JSD) seem to show
good sensitivity and fulfills the triangle inequality and is therefore suggested to be
used in evaluating resynthesis models.

Introduction

The aim of the present work is to find a reliable measure to compare real human articulatory
movements, recorded with electromagnetic articulography, to articulatory movements simulated
in a vocal tract simulator. This task, however, poses several problems.

Not only do articulatory trajectories of identical words and phones differ between multiple
articulations of one and the same speaker due to noise in the kinematic system [1, 2, 3, 4] and
short-term practice effects [5, 6, 7, 8, 9]. Also, inter-speaker differences in articulatory strategies
due to different physiology of the oral cavity result in different trajectories for the same phones
[10, 11, 12, 13, 14].

In spite of these challenges, comparing real articulatory trajectories to their simulated coun-
terparts is critical in establishing trust in the simulator’s results and its generalizability We do not
want that the trajectories are fitted directly to their human counterparts but rather, they should
be a result of simulator-constraints or optimized input parameters, that might be indirectly in-
fluenced by how humans articulate, but are optimized primarily on their acoustic results.

In the next section, we will first present the data which we used for our study, followed by
a detailed discussion of the challenges coming with establishing a dissimilarity measure on the
comparison of real and simulated articulatory trajectories.

Theory

The goal is to establish a (dis-)similarity measure for trajectories of articulography data with a
duration ranging between 200 ms to 1000 ms (40 to 200 samples at 200 Hz).

The resulting measure should preferably fulfill the axioms of a metric. Therefore each two
trajectories a,b,c € A can be compared with the measure d : A x A — [0,0), which gives a
dissimilarity score between 0 and oo, fulfilling:

1. non-negative d(a,b) > 0,

2. identity of indiscernibles d(x,y) =0 < x =y,
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3. symmetry d(x,y) = d(y,x),
4. triangle inequality / subadditivity d(x,y) < d(x,z) +d(z,y).

All proposed measures are constructed in a way that they fulfill axioms 1 and 3, but axiom
4 is tested empirically. Axiom 2 is of minor priority for the data at hand as the trajectories are
not directly optimized.

Data

Real human articulatory movements

We used articulatory movements provided by the Karl Eberhards Corpus of Southern German
(KEC) [15]. The KEC contains recordings of spontaneous dialogues between two speakers,
seated in separated recording booths and hearing each other via headphones. Speakers were
friends instructed to talk about a common topic. The KEC contains articulatory recordings
for 20 speakers, 30 minutes for each, performed with the NDI Wave Articulograph (sampling
frequency = 400 Hz). The sensor movements were recorded at the tongue tip (TT), tongue
body (TB, 2 cm further back) and tongue mid (in between of TT and TB). In post-recording
procedures, articulatory movements were corrected for head movements and further rotated
to the center of a biteplate. Simultaneously, the audio signal was recorded and synchronized
with the articulography signal. The KEC contains manual annotations at the word level and
automatic annotations at the segment level.

To validate and compare the different dissimilarity measures we extracted all instances of ja
(N =1111) and halt (N = 217). For comparison with simulated trajectories, EMA trajectories
were downsampled to 200 Hz. To get a common reference point, positions within each speaker
where shifted by their 95% quantile so that the 95%quantile is the shared origin of all recording.
To keep the different orientations in space comparable and preserve the unit of millimeters we
deliberately did not apply any scaling across speakers.

Simulator

To obtain simulated articulatory trajectories, we used simulated markers on the tongue of the
VocalTractLab (VTL) geometrical model speech synthesis model [16]. VTL is a 3-dimensional
geometrical vocal tract simulator linked with a quasi-1-dimensional acoustic synthesis model.

VTL allows to synthesize speech from control parameters (cp)-trajectories which define,
for each subsequent step in discretized time, the geometrical shape of the vocal tract, properties
of the glottis model, and lung pressure. For each 10 millisecond time step, 33 control param-
eters need to be adjusted. Until now, cp-trajectories have been derived mostly by means of a
dominance model that takes gestural scores as input.

The concatenative synthesis approach used here relies heavily on handcrafted gestural
scores (gestural targets) that come with the VTL simulator, defining control parameter targets
for the different input dimensions of VTL. These have been derived from fMRI scans and other
sources of geometrical knowledge about the sounds produced in the German language, together
with some optimization to obtain more realistic acoustics [16].

To resynthesize all instances of ja and halt, we used the temporal information, i. e. the seg-
ment boundaries, provided by the phone annotations which were fed to the dominance model,
coordinating the temporal structure of the cp-trajectories. The details of the approach are de-
scribed [17] and the necessary code can be found under [18].

Figure 1 shows the tongue body sensor positions as a function of time (x-axis) for one
random EMA recording of the tokens ja (yes) and halt (just) in black dots and the resynthesized
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VTL positions in red triangles. All three space coordinates are plotted side by side. The different
length is due to a padding at the end in the resynthesis.
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Figure 1 — Trajectories of the tongue body sensor in back-front-direction (x, left panels), in left-right-
direction (y, middle panels) and in low-high-direction (z, right panels) for the word ja (top panels) and
the word halt (bottom panels). The black circles show measured EMA data from the first subject and is
compared in each plot to the VTL simulated trajectories of a matched sensor (in red triangles). Time is
given in seconds, distances in Millimeters. No direct fitting is applied.

Samples

To validate the dissimilarity measures (description below), we created 10,000 random samples.
Each sample consists of one trajectory of a random human subject a and a random word v.
Depending on this first trajectory avl, the following additional trajectories have been sampled
for comparison:

e av2 — one random different trajectory of the same speaker and the same word
e aw — one random different trajectory of the same speaker but different word
e bv — one random trajectory of a different speaker and same word

e bw — one random trajectory of a different speaker but different word

e vtlavl — the vtl resynthesized trajectory matching avl

e vtlv — one random trajectory of the vtl resynthesis of the same word

e vtlw — one random trajectory of the vtl resynthesis of a different word

We tested which measures fulfill our hypothesis about the data and which ones seem to be
not sensitive enough to capture the systematic structure in the dissimilarities. We hypothesized
that the dissimilarities within the same speaker and the same word d(av1,av2) should be small-
est together with the dissimilarities of the same word within the resynthesis d(vtlavl, vtlv) as
theses share the same geometry and the same overall execution pattern. This should be fol-
lowed by the resynthesis of the same word d(avl,vtlavl) as these follow the same execution
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violations
sub additivity

measure category 1D 3D
mean abs diff point-wise 872 1042
sqrt mean sq diff point-wise 569 1042
1 -cor point-wise 2391 1075
abs t-value paired t-test point-wise 3026 2518
abs mean diff global 221 234
abs std diff global 141 64
JSD global 3 3
abs t-value unpaired t-test global 3516 2714

Table 1 — The different measures tested here can be categorised into point-wise measures and global
measures. Unfortunately, all measures except the JSD measure seem to violate the sub additivity (trian-
gle inequality) substantially. Violations are counts from the total 10,000 samples.

timing in different geometries or the dissimilarities of a different speaker speaking the same
word d(avl,bv). We should observe highest dissimilarities for different speaker and different
word d(avl,bw), and simulator and a different word d(av1, vtlw), respectively.

d(avl,av2),d(vtlavl,vtlv) < d(avl,vtlavl),d(avl, bv),d(vtlavl,vtlw)
< d(avl,bw),d(avl,vtlw)

The sub additivity (triangle inequality) is tested with the following inequality: d(avl, vtlavl) <
d(avl,bv) +d(bv,vtlavl).

Measures

Table 1 shows two groups of measures. In the first group, point-wise measures, first some dis-
similarity is calculated at each time point and then this point-wise dissimilarities are aggregated
over time. In the second group, global measures, first each sequence is collapsed over time
and then the difference measure is applied onto this time independent measure. All measures
have been applied only on the low-high axis (1D-condition) and on all three space axis jointly
(3D-condition) of the tongue body sensor.

Into the first, point-wise group would fall a paired t-test as well as calculating a regression
coefficient. These measures share that they are sensitive to miss-alignments and that they need
to have the same number of (time aligned) data points available. Therefore, for sequences of
different length the longer sequence was clipped. This approach was followed here.

Into the second, global, group would fall a t-test for independent samples, differences in
energy or frequency component. As these measures operate on sequence descriptions that do
not contain time explicitly anymore, it is strongly advised to use some velocity or frequency
(phase and energy) measures to disambiguate time reversed or time shifted patterns.

In the following paragraphs, we describe the measures used in the current study.

The mean abs diff is the mean of the point-wise euclidean differences between the tra-
jectories at each point in time. In 1D this is equivalent to the absolute differences. In 3D the
eucleadian distance at each point is calculated and the mean over all time points is computed.

mean abs diff =

Z(aiz —bj)?

min ¢ i

The sqrt mean sq diff is the mean of the point-wise euclidean differences between the
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trajectories at each point in time. In 1D this is equivalent to the absolute differences. In 3D, the
eucleadian distance at each point is calculated and the mean over all time points is computed.

! ZZ(ait - bit)2

Tnin ro

sqrt mean sq diff = \/

For the one minus corr measure the Pearson correlation coefficient between the two tra-
jectories is calculated. To obtain data for the 3D computation, a vector containing position data
from all three dimensions is created by concatenation. As r from —1 to +1 (both including) and
the identity is expressed by a correlation coefficient of +1, the measure is constructed by

one minus corr = 1 — corr(a, b).

The tvalue paired measure is constructed out of a paired t-test applied to the trajectories.
The absolute value of the resulting t-value is used as a measure. To obtain data for the 3D
computation, all three dimensions are concatenated for both trajectories into one long series per
trajectory.

In the abs mean diff measure first the mean of each trajectory is calculated and then the
euclidean distance between both mean vectors is calculated.

, 1 1 2
mean abs diff \/Z," (Ta ;at T Zl:bt)i

The tvalue unpaired measure is constructed out of a unpaired, independent t-test applied
to the trajectories. The absolute value of the resulting t-value is used as a measure. To obtain
data for the 3D computation, a vector containing position data from all three dimensions is
created by concatenation.

For the JSD measure a histogram along the space dimension with 20 evenly spaced bins is
created over both trajectories for each dimension. This histogram contains the counts of how
many points per trajectory fall into this region in space. These counts per bins then are turned
into empirical probability distributions by calculating the relative frequencies. The Jensen-
Shannon distance (JSD) is calculated between the two probability distributions per space axis.
In the 3D computation the JSD is calculated separately for each dimension and then added up
into a single number.

JSD = \/ Z (%D(Pai| \Pmi) + %D(Pbi”pmi)>

Here p,; = %( Pai + Ppi) summed probability distributions of the empirical probability dis-
tributions that are constructed out of the two trajectories a and b. D(X||Y') denotes the Kullback-
Leibler divergence between X and Y.
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Figure 2 — The two by two plots on the left show mean dissimilarities between the reference and the
same speaker and same word (av), same speaker and different word (aw), different speaker but same
word (bv) and different speaker and different word(bw). The average dissimilarity should increase from
left to right within each plot. The right two by two plot panel show the mean dissimilarities between the
reference and the resynthesis in vtl (id), another resynthesis of the same word (same) and the resynthesis
of the other word (Xother). The average dissimilarity should increase form left to right within each plot
again.
Results

Figure 2 shows four selected measures that show the lowest violations in the sub additivity and
confirm mostly our hypothesis along the expected dissimilarities. The 1d point-wise measures
have more violations of triangular inequality, but show a good compromise in the mean dis-
similarities between word class and speaker. The 3d point-wise measure seems to be sensitive
to the geometrical differences and lacks the ability to distinguish the different categories of vtl
resynthesis. Overall the JSD measure seems to be most promising in detecting differences be-
tween speakers and between word trajectories. The vtl results for the JSD measure could be
more sensitive, but does not seem to go in the wrong direction. The JSD measure in 3d (not
shown) show very similar results to the 1d case. The JSD achieves this while fulfilling all metric
axioms.

Discussion

In the current paper we have evaluated several dissimilarity measures for their suitability to
compare real and simulated articulatory trajectories. We identified four measures which seemed
to be suitable to gauge dissimilarities between real and simulated articulatory trajectories. The
measures based on point-wise distances captured the hypothesized ordering relations in our
data, but lacked to fulfil the triangle inequality.

The problematic measures yield unclear results partly because they do local space normal-
ization. In principle, it is possible to go into normalized space, e. g. by speaker, or into normal-
ized time, e. g. by utterance, to calculate all the measures evaluated here. However, space and
time normalization which includes local scaling removes meaningful units and therefore makes
it difficult to compare different axes or instances. In the present study, local normalization is
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applied by the measures derived from the t-test and the correlation. Both yielded unclear results
and are therefore rejected.

Surprisingly, however, the most promising measure turned out to be JSD. Although it is
not a well established measure of dissimilarity on trajectories, its results not only follow the
hypothesized differences between the tested instances, but also it fulfills the definitions of a
metric. It should be noted that the current implementation involves arbitrary binning of the
data.

The JSD measure now can be extended to multiple sensors simply by adding the distances
of each sensor on top of each other. Furthermore the JSD measure should be applied to the
velocity curves of the trajectories and added to the distances as well. By adding up all these
distances one ensures that the real trajectories are similar in the time domain and not only on
the time marginal.

Another important but debatable decision in the current study was focus on rather short
signals. Hypothetically, it could have been possible to use very long utterances, even of several
minutes. For longer sequences, which consist of repeating similar patterns, a different class of
methods might be better suited in comparison to those presented here.

For very long patterns with a lot of re-occurrences that come from a small set of symbols,
and that are easily identified, methods that first transform the signal into a string of symbols
and then apply a distance measure (or similarity score) to two strings like the Needleman-
Wunsch algorithm should work fine. If the re-occurrences should not be identified as being
identical to each other — as it is the case in the symbolic approach —, but segment boundaries
or other landmarks can be identified in the signal, e.g. by means of phases of rest or silence,
an alignment method can be applied first. Some local similarity measures can be applied to the
signal between the aligned landmarks. Another approach for longer sequences, it might become
a lot more feasable to look at the signal not in the time domain but in the frequency domain.
Here, differences between different frequency bands and between phases could be identified
and used to construct a difference measure.

Depending on the research question, statistical approaches like generalized additive models
(GAM) [19] can could be applied. GAM can fit curved trajectories over time jointly for many
sequences. The advantage of such an approaches is that it can find systematic variations between
groups even in a nested manner. This would be the right method to ask which systematic
differences between the trajectories in ja and halt exist and how they are different to the ones
resynthesized with the simulator.

Yet another approach might lie in the emerging application of recurrent neural networks
(RNN) and variational autoencoders (VAE). In principle, these could be used to encode se-
quences of different durations with an RNN into a time independent latent representation. With
the VAE framework, these latent representations are constructed by optimally encoding the
structure in the sequence data while fulfilling constrains like following a multidimensional
Gaussian distribution and therefore behaving similar to a principle component analysis. On
this latent space representation, a difference measure can be constructed and could validated.

In conclusion, finding dissimilarity measures that work on short trajectories of articulatory
movements is a difficult endeavour. With the JSD, there seems to be a measure which we can be
used to distinguish the quality of resynthesis systems while fulfilling the properties of a metric.
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