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Abstract: Investigating speech imitation, in particular articulatory copy synthesis,
benefits the understanding of speech production and can improve speech recogni-
tion and synthesis. We proposed a framework for copy synthesis with an artificial
neural network (LSTM regression model) and an articulatory speech synthesizer
(VocalTractLab), which were responsible for the acoustic-to-articulatory mapping
and the inversion, respectively. We used rule-based method to create gestural scores
from texts, which were converted to articulatory trajectories and subsequently sim-
ulated to produce the corresponding acoustic signals. To make the subsequent
mapping more robust, we expanded the acoustic and articulatory space by ma-
nipulating speaking effort, voice quality, pitch level, and vocal tract length of the
created gestural scores or acoustic signals, producing 81 variants for each utter-
ance. With acoustic features as input and articulatory trajectories as output, we
trained the LSTM models to build the acoustic-to-articulatory inversion. For test-
ing, we estimated the articulatory trajectories from acoustic features, thus obtaining
the underlying articulatory process. The experiments showed that the correlation
coefficients (between estimated articulatory trajectories from acoustic features and
the real ones converted from gestural scores) ranged from 0.18 to 0.973 and the root
mean square error (RMSE) ranged from 0.043 to 0.255 for the concerned 30 artic-
ulatory parameters of VocalTractLab. The estimated articulatory parameters were
further fed into VocalTractLab, whose output speech achieved a word recognition
accuracy of 17.24%.

1 Introduction

Investigating speech imitation, in particular articulatory copy synthesis, benefits the understand-
ing of speech production and can improve speech recognition and synthesis [1]. Articulatory
copy synthesis refers to a technique of reproducing human speech by modeling the correspond-
ing articulation process. The research question can be abstracted as articulatory-to-acoustic
mapping and its inversion. The existing methods usually suffer from one or more of the fol-
lowing limitations: (1) the construction of mapping models relies on recorded articulatory data
[2], which is labor-intensive or invasive to speakers during data collecting, (2) the inversion is
limited to short-utterances (either isolated vowels or simple ‘CV[C] syllables) [3][4], (3) the
analysis-by-synthesis (ABS) based methods [1][4] are time-consuming and have no generality,
i.e. the inversion has to be individually performed for each utterance, or (4) the mapping is
based on speaker-dependent models [5], i.e., both the training and testing data come from the
same speaker. In this paper, we propose a novel approach of articulatory copy synthesis tackling
the above problems to some extent.

Articulatory copy synthesis is not only to reproduce the acoustic signal of given natural
speech, but also to obtain the articulation. The difficulty of this topic comes from at least two
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main aspects: (1) both the acoustic and articulatory parameters have temporal dependences, (2)
the acoustic-to-articulatory inversion has the problem of non-uniqueness. Recently, long short-
term memory (LSTM) neural networks, due to their power of modeling sequential data, have
been successfully applied to many areas including handwriting recognition, language transla-
tion, speech recognition and so on. In the present study, we proposed a framework for copy
synthesis with a neural network regression model and an articulatory speech synthesizer.

2 Method

2.1 The framework of articulatory copy synthesis
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Figure 1 — Schematic diagram of ariticulatory copy synthesis with Long Short-Term Memory Networks
and VocalTractLab. The upper part shows the process of generating gestural scores. The middle part is
the core of the system, modeling the acoustic-to-articulatory mapping and inversion. The bottom part
illustrates the unfolded neural network model and testing the trained model with human speech.

Figure 1 illustrates the framework for copy synthesis. It can be divided into three main
stages: creation of training data, modeling of mapping and inversion between acoustic and ar-
ticulatory representations, and testing with human speech. Starting from text, we use a G2P tool
to convert each word of it to a phoneme sequence, which is subsequently mapped into gestures
with a rule-based method. All gestures constitute a gestural score. In the second stage, the
cores are an articulatory speech synthesizer and an LSTM neural network (abstracted as a RNN
neural network in Figure 1), which are responsible for the articulatory-to-acoustic mapping and
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the inversion, respectively. The articulatory synthesizer converts the gestural scores generated
in the first stage to articulatory trajectories and corresponding synthetic speech. After feature
extraction, the acoustic features serve as the input of the neural network. Accordingly, the ar-
ticulatory trajectories serve as the output during the training of the neural network regression
model. The RNN with LSTM units can be unfolded into a series of networks (as represented
in the bottom-left corner of Figure 1). Each memory unit is composed of a cell, an input gate,
an output gate and a forget gate, to track the network state and the flow of information into and
out of the cell. In the present work, the LSTM models the utterances as continuous trajecto-
ries in the acoustic as well as in the articulatory space. The property of recurrence of LSTM
handles the temporal dynamic behavior of the parametric dependencies for entire sequences of
data. The acoustic features and the articulatory trajectories serve as the input and output of the
LSTM neural network, respectively. In the testing stage, after feature extraction, the acoustic
features of human speech will serve as the input of the trained LSTM regression model whose
output is the estimated articulatory trajectories. Using VTL again, we convert them to synthetic
speech.

2.2 Articulatory speech synthesizer

VocalTractLab-2.2 (VTL) [6] is the articulatory speech synthesizer used in this work. It takes
articulatory trajectories as input and simulates the acoustic signal as output. There are 33 con-
trol parameters in VTL (as listed in Table 1): 24 for the vocal tract model and 9 for the vocal
fold model. To synthesize speech, users can directly specify values for them every 10 millisec-
onds. Alternatively, users can use a gestural score (an organized pattern of articulatory gestures)
to indirectly control the articulation process. The realization of each phoneme is cooperatively
governed by multiple gestures, each of which consists of three parameters [7]: a gesture value,
a duration, and a time constant, which define target positions of articulators, their duration, and
how quickly the participating articulators reach the targets (i.e., speaking effort), respectively.
All involved gestures for the the realization of an utterance constitute its gestural score. In fact,
the gestural score is internally converted to articulatory trajectories in VTL, because the mo-
tions of articulators in response to discrete gestures are controlled by linear dynamical systems,
thus producing articulatory trajectories along the time-axis. Subsequently, acoustic signals are
simulated by a time-varying branched acoustic tube system. VTL conducts the articulatory-to-
acoustic conversion, thus preparing the training samples for the LSTM.

2.3 Creation of training samples

As shown in Figure 1, we first created gestural scores and then converted them to articula-
tory trajectories as well as corresponding acoustic signal with VTL. From the text, we first
used the WebMAUS G2P service [8][9] to obtain the SAMPA sequence. Then, each phoneme
was mapped to its participating gestures being specified by Kohler’s German phoneme intrinsic
duration and preferred time constants. Next, all gestures within an utterance were organized
according to the time structure model of the syllable [10], thus producing a gestural score (de-
noted as “prototype”, compared to its variants as introduced later). The details of this process
are described in [11]. The only difference is the setting of f0. For each utterance, we combined
every three syllables into one group, with 81.7, 79.7 and 77.7 semitones for values of pitch tar-
gets of the first, second, and third syllables, respectively. All created gestural scores were then
fed into VTL to generate articulatory trajectories and corresponding synthetic speech. To assess
the quality of the synthetic speech created with such a strategy, we examined the intelligibility
with the WebMAUS automatic speech recognition (ASR) service [12]. We created 1681 gestu-
ral scores with the sentences from the BITS corpus [13], which were fed into VTL to synthesize
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Table 1 — articulatory parameters of VocalTractLab synthesizer

Models parameters Description
HX ,HY Horiz. and vert. hyoid positions
JX,JA Jaw position and Jaw angle
LP,LD Lip protrusion and vert. lip distance
VS§,VO Velum shape and velum opening
wcC Wall compilance
Vocal tract model | TCX,TCY Horiz. and vert. tongue body center positions
TTX, TTY Horiz. and vert. tongue tip positions
TBX, TBY Horiz. and vert. tongue blade positions
TRX,TRY Horiz. and vert. tongue root positions
MA1 - MA3 Minimal area for tongue body, tongue tip and teeth-lips
TS1-TS84 Tongue side elevation (from the anterior to the posterior)
f0 fundamental frequency
P subglottal pressure
Xportom lower displacement
Xiop upper displacement
Vocal fold model | chink_area chink area
lag phase lag
rel_amp relative amplitude
double_pulsing double pulsing
aspiration_strength | aspiration strength

the corresponding acoustic signals. The ASR results reached a word recognition accuracy of
52.75% for the synthetic speech, compared to that of 76.6% for the original human-produced
speech in BITS corpus.

However, the LSTM regression model trained with such data is not robust against different
acoustic variations. For one thing, the duration and time constants used are fixed for specifying
the same gestures. Obviously, they vary a lot with their contexts. For another thing, all data
were produced by a single speaker (the VTL model speaker), thus having a similar speaking
style and voice quality. To tackle these limitations, we expanded the acoustic space and/or ar-
ticulatory space by introducing several variants for each utterance in several manners. First, we
increased or decreased the values of time constants by 30%, with all else being unchanged, for
all gestures in the “prototype” gestural scores. Second, we overall increased or decreased the
values of pitch targets by 3 semitones on the basis of the “prototype” gestural scores. Third, we
substituted the “modal” phonation setting with “slightly-pressed” or "slightly-breathy” settings.
Each combination of such operations resulted in a variant of the gestural score such that its cor-
responding articulatory and acoustic representations formed a new training sample. Last, on the
basis of synthetic speech, we further manipulated the vocal tract length, by setting factors equal
to 0.8 and 1.2 with the “change gender” functionality of Praat, while keeping its articulatory
trajectories unchanged. Therefore, we created 81 training samples (three time constants x three
pitch levels x three phonation settings X three vocal tract lengths) for each utterance.

3 Experiments and Results

3.1 Dataset

To create the training samples for the LSTM, we selected the first 2,000 sentences from a lan-
guage model corpus used in an speech recognition system [14]. For each sentence, we created
81 variants with the strategy described in Sec. 2.3. We obtained 16,000 training utterances
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(~591.8 hours speech). The data was randomly split into the actual training set (95%) and eval-
uation set (5%). For the test set, we used both the synthetic and human speech. The first 120 of
1681 synthetic utterances of BITS texts are used as synthetic test samples (40,901 frames, ~0.11
hours). In addition, we tested some human utterances to examine the generalization capacity
of the trained model, including 80 sentences from the BITS corpus [13], 10 sentences from the
Berlin Emotional Database [15], 30 sentences from the MMASCS database [16], and 10 words
produced in a carrier sentence. These are in total 130 natural utterances produced by 7 speakers
(5 males and 2 females), containing 47,580 frames (~0.13 hours speech).

We extracted 42 acoustic features from acoustic signals: 13 Mel-Frequency Cepstral Coef-
ficients (MFCC) and 1 voiced/unvoiced probability extracted using STRAIGHT [17] as well as
their first and second order derivatives. These features were extracted from a 20-millisecond-
length window shifted every 10 milliseconds. VTL synthesizes acoustic signals with articula-
tory trajectories every 10 milliseconds. We assumed that one frame of the acoustic signal is
controlled by the corresponding frame of articulatory parameters so that they constitute one
training sample of the LSTM networks. The acoustic features were first z-score normalized per
sentence during feature extraction, and then they as well as articulatory trajectories were further
normalized to the range [0, 1] for the whole dataset when applied to LSTM networks.

3.2 Experimental setup

Some settings of the neural network regression model parameters are listed in Table 2. The
input and output of the LSTM are 42 acoustic features and 30 articulatory control parameters!,
respectively. Each training batch had 20,000 training samples/frames. The length of time steps
was 100 frames, thus one second of speech. The mean square error (MSE) between outputs and
targets was used as the loss function. We trained the model for 100 epochs. Figure 2 shows
the MSE loss on evaluation and test sets after each epoch. To compare the performance due to
model architecture, we developed three systems: system-1 (indicated with red solid line) has 2
hidden layers and 256 nodes per layer, system-2 (indicated with blue dotted line) has 3 hidden
layers and 256 nodes per layer, and system-3 (indicated with black dashed line) has 2 hidden
layers and 512 nodes per layer. The system-3 performed best and was used to further analyze
the results.

Table 2 — The settings of neural network regression model parameters.

Parameters | Input_dimension | Output_dimension | Batch_size | Sequence_length | Epoch

Values 42 30 20,000 100 100

3.3 Results

We evaluated the performance of the copy synthesis system in terms of three metrics: the corre-
lation coefficients and RMSE of articulatory parameters (between estimated ones from speech
and the real ones), and the ASR accuracy. The experiment with synthetic testing utterances
showed that, for the concerned 30 articulatory parameters of VTL, the correlation coefficients
ranged from 0.18 to 0.973 and the RMSE ranged from 0.043 to 0.255. The estimated articula-
tory parameters were further fed into VTL, whose output speech achieved a word recognition
accuracy of 17.24%. Figure 3 shows the comparison of originally synthesized utterance and its

The parameters wall compliance (WC), phase lag (lag), and fundamental frequency (f0) were excluded as
they do not change withing the dataset.
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reproduced synthetic counterpart for the word “keinerlei”. They are similar in terms of both
acoustic and articulatory representation. The human test utterances were evaluated in terms of
ARS accuracy, achieving 7.6% word accuracy.

A further examination in detail revealed that the trained LSTM model reproduced most ar-
ticulatory parameters well, except for velum shape (V'S), tongue root vertical positon (TRY’) and
subglottal pressure (Py,;). Especially, the Py,;, defined from gestural score always equaled 800
Pascal in non-silent part and gradually increased from or decreased to 0 Pascal in the utterance
initial and final part, respectively, while the estimated Py,;, fluctuated a lot, thus leading to a very
low correlation coefficient of 0.18. What happened due to the unsmooth subglottal pressure tra-
jectory was the introduction of noise during the acoustic simulation. This may partially explain
why the human-produced BITS speech has a little better quality than originally synthetic BITS
speech in terms of recognition accuracy (76.6% versus 52.75%) while the reproduced synthetic
speech has only a word recognition accuracy of 17.24%. The worst case occurred for the repro-
duced human speech from estimated articulatory trajectories. In addition to the noise introduced
by unsmooth trajectories, the speaker variation may be another factor. The reason is that the
synthetic speech both in training set and test set was produced by the same speaker (i.e. VTL),
thus resulting in similar acoustic characteristics. However, the acoustic difference between VTL
speaker and human speakers affects the performance.
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Figure 2 — Mean square error (MSE) between outputs and targets after each epoch on: (a) the validation
set and (b) the test set. The performance of the neural network regression model is compared with
different settings for the number of hidden layers and nodes per layer.

4 Conclusion and future work

We proposed a framework for copy synthesis with an artificial neural network (LSTM regres-
sion model) and an articulatory speech synthesizer (VocalTractLab), which are responsible for
the acoustic-to-articulatory mapping and the inversion, respectively. With a rule-based method
and VTL, we created the gestural scores which were converted to articulatory trajectories and
subsequently simulated to the corresponding acoustic signal. They constituted the training sam-
ples for the LSTM regression model. From the acoustic features of test speech, the trained
model can estimate articulatory parameters with high correlation coefficients and low RMSE
except for some specific parameters. However, the estimated articulatory trajectories are not as
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Figure 3 — The comparison of original and reproduced utterances, for the word “keinerlei”, form the
articulatory and acoustic aspects. The top panel shows the oscillogram and spectrogram of testing
speech originally synthesized with VocalTractLab. Below it is the the counterparts of the reproduced
speech from estimated articulatory trajectories with VTL. The rest part of this figure are the VO, TCX,
TBY, TRY trajectories with red solid lines for reference trajectories of originally synthesized speech
and blue dashed lines for estimated ones.

smooth as the ones converted from original gestural scores, thus making the quality of repro-
duced synthetic speech not very high. Punishing the parameter fluctuation in the loss function
is worth considering in future work. Besides, although we employed multiple variants of gestu-
ral scores or the speech signal to alleviate the speaker variation, the generalization capacity of
trained model is limited. In the present work, we only manipulated some variables with several
discrete values, the resulting training samples did not cover the full articulatory and acoustic
space. Therefore, we will widen the articulatory and acoustic space by manipulating variables
with random values, for example, sampled from Gaussian distributions.

5 Acknowledgements

This research work is partially sponsored by China Scholarship Council. We thank the Center
for Information Services and High Performance Computing (ZIH) at TU Dresden for generous
allocations of computing resources.

References

[1] GAoO, Y., S. STONE, and P. BIRKHOLZ: Articulatory copy synthesis based on a genetic
algorithm. Proc. Interspeech 2019, pp. 3770-3774, 2019.

[2] ERICSDOTTER, C.: Articulatory copy synthesis: Acoustic performance of an MRI and
X-ray based framework. In Proceedings of the XVth ICPhS, pp. 2909-2912. 2003.

[3] PHILIPPSEN, A. K., R. F. REINHART, and B. WREDE: Learning how to speak:
Imitation-based refinement of syllable production in an articulatory-acoustic model. In
4th International Conference on Development and Learning and on Epigenetic Robotics,

pp. 195-200. IEEE, 2014.

58



[4]

[5]

[6]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

DANG, J. and K. HONDA: Estimation of vocal tract shapes from speech sounds with a

physiological articulatory model. Journal of Phonetics, 30(3), pp. 511-532, 2002.

ELIE, B. and Y. LAPRIE: Copy synthesis of running speech based on vocal tract imaging
and audio recording. In ICA 2016 - 22nd International Congress on Acoustics. 2016.

BIRKHOLZ, P.: Modeling consonant-vowel coarticulation for articulatory speech synthe-
sis. PloS one, 8(4), p. 60603, 2013.

BIRKHOLZ, P., I. STEINER, and S. BREUER: Control concepts for articulatory speech
synthesis. In Proceedings of the 6th ISCA Workshop on Speech Synthesis, Bonn, Germany,
pp- 5-10. 2007.

REICHEL, U. D.: Perma and balloon: Tools for string alignment and text processing. In
Interspeech, 13th Annual Conference of the International Speech Communication Associ-
ation, pp. 1874-1877. 2012.

REICHEL, U. D. and T. KISLER: Language-independent grapheme-phoneme conversion
and word stress assignment as a web service. Studientexte zur Sprachkommunikation:
Elektronische Sprachsignalverarbeitung 2014, pp. 4249, 2014.

XU, Y. and F. L1U: Tonal alignment, syllable structure and coarticulation: Toward an
integrated model. Italian Journal of Linguistics, 18(1), pp. 125-159, 2006.

GAO, Y., H. DING, P. BIRKHOLZ, R. JACKEL, and Y. LIN: Perception of German tense
and lax vowel contrast by chinese learners. Studientexte zur Sprachkommunikation: Elek-
tronische Sprachsignalverarbeitung 2019, pp. 25-32, 2019.

KISLER, T., U. REICHEL, and F. SCHIEL: Multilingual processing of speech via web
services. Computer Speech & Language, 45, pp. 326-347, 2017.

ELLBOGEN, T., F. SCHIEL, and A. STEFFEN: The BITS speech synthesis corpus for
German. In Proceedings of the Fourth International Conference on Language Resources
and Evaluation (LREC’04), vol. 47, p. 40. European Language Resources Association
(ELRA), Lisbon, Portugal, 2004.

RADECK-ARNETH, S., B. MILDE, A. LANGE, E. GOUVEA, S. RADOMSKI,
M. MUHLHAUSER, and C. BIEMANN: Open source German distant speech recognition:

Corpus and acoustic model. In International Conference on Text, Speech, and Dialogue,
pp- 480—488. Springer, 2015.

F. BURKHARDT, M. R. W. F. S.; A. PAESCHKE and B. WEISS: A database of German
emotional speech. In Interspeech, vol. 5, pp. 1517-1520. 2005.

D. ScHABUS, M. P. and P. HOOLE: The MMASCS multi-modal annotated synchronous

corpus of audio, video, facial motion and tongue motion data of normal, fast and slow
speech. In LREC, pp. 3411-3416. 2014.

KAWAHARA, H., M. MORISE, T. TAKAHASHI, R. NISIMURA, T. IRINO, and
H. BANNO: Tandem-straight: A temporally stable power spectral representation for pe-
riodic signals and applications to interference-free spectrum, f0, and aperiodicity estima-

tion. In 2008 IEEE International Conference on Acoustics, Speech and Signal Processing,
pp- 3933-3936. IEEE, 2008.

59



	07-Yingming_Gao-Articulatory_copy_synthesis_using_Long_Short_Term_Memory_Networks
	Introduction
	Method
	The framework of articulatory copy synthesis
	Articulatory speech synthesizer
	Creation of training samples

	Experiments and Results
	Dataset
	Experimental setup
	Results

	Conclusion and future work
	Acknowledgements


