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Abstract: The detection and recognition of a spoken keyword is an adequate and

comfortable method to activate a speech dialogue system. A low false acceptance

rate (FAR) is needed to avoid the erroneous activation of a speech assistant and the

erroneous activation of a speech controlled device as consequence of recognizing

a legal command after the keyword. The false rejection rate (FRR) should also

be low to guarantee good user acceptance. Often, the keyword recognition has to

be realized in an embedded system with limited computational resources. There-

fore, the detection and recognition algorithm has to fulfill the requirements of a low

FAR and FRR on the one hand and the need of a low computational load on the

other hand. We designed a two stage algorithm to meet these expectations. The

first stage consists of a GMM-HMM (Gaussian Mixture Model - Hidden Markov

Model) based recognizer with one or several HMMs for the keyword and a set of

so-called filler HMMs to model speech segments that do not contain the keyword.

To reduce the FAR of the first stage, the MEL spectrum of the pretended keyword

segment is analyzed by employing a neural network. The task of the neural net-

work as second stage of the recognition process is either to accept or the reject the

keyword as pretended in the first stage. It turns out that the FAR of the first stage

can considerably be reduced by the second stage.

1 Introduction

The recognition of a predefined keyword is an essential feature in improving the usability and

the acceptance of a speech assistant system. Instead of pressing a button, the keyword is used

to wake up the speech dialogue system and to enable further speech input, e.g. to address an

information inquiry or to control a device as a component of a home automation system. The

voice activation brings about the need of permanently listening for a spoken keyword. The task

is the detection of segments in a continuous audio stream that may contain the keyword. Pattern

matching is needed to classify the segment as belonging to one of two categories, keyword

or non-keyword. But this classification has to work extremely reliable. There should be no

false acceptance of an audio segment that does not contain the keyword but a similar sounding

sequence of phonemes. In case of an automation system, this could lead to false activation of

a device. To avoid such a false acceptance, the keyword should be chosen carefully. It should

contain a sequence of phonemes that usually does not occur in the common vocabulary of a

language. Furthermore, it can be of advantage to have a phoneme with high energy, usually a

vowel, at the beginning and/or at the end of the keyword so that the word boundaries can be

detected better in a noisy background. For example, this is the case with the keyword "Alexa"

used by the Amazon devices.

The usual setup of a keyword detection was based on the parallel usage of a Hidden Markov

Model (HMM) for the keyword and a set of so-called filler models. Quite often, a set of mono-

phone or triphone HMMs has been taken as filler models [1], so that all speech segments not
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containing the keyword could be modeled as a sequence of the corresponding phonemes. Nowa-

days, neural networks are applied to detect a keyword by taking a sequence of feature vectors

as input for the network. Different types of neural networks from multi-layer perceptrons over

networks with convolutional layers up to recurrent networks like LSTM (long short-term mem-

ory) [2, 3, 4] have been trained on the specific task to find and detect the keyword within the

continuous stream of feature vectors.

Nowadays, most of the speech recognition systems work in a distributed setup. The speech

is recorded and played back by a client system like e.g. the Amazon Echo or the Google Home

devices. Probably, the speech recognition is done with an extremely powerful set of server ma-

chines somewhere in the cloud to allow the application of neural networks as part of the pattern

matching. Therefore, the speech utterance that should be recognized has to be transmitted from

the client to the server via the internet. In the opposite direction, the audio output has to be

transmitted to realize a speech dialogue. When using the distributed setup also for the recogni-

tion of the keyword, this would cause a continuous transmission of the recorded audio stream.

To avoid this continuous transmission, devices like Amazon Echo or Google Home usually re-

alize the keyword detection on the client system. Google has presented an approach where they

combine a keyword detection on the client side with a keyword verification on the server side

[5]. This approach can be applied in case the keyword is spoken in combination with a speech

inquiry or command. The computational power on the client side is usually much lower than

on the server side. Especially when applying a neural network a high number of multiplications

is needed to realize the continuous detection of the keyword. In [6] the relationship between

the network topology and the number of multiplications as well as the power consumption of a

Raspberry Pi device is presented.

In our application, we use keyword detection as component of a speech recognition system

in the field of home automation. The recognition of the commands for controlling devices at

home will be realized on a server that is located inside the house. The recorded microphone

signal will not leave the home to take care of data privacy. The speech input will be done

with very small devices that could be placed in standard outlet sockets for example. The client

as well as the server system have to be realized very cost-effectively. Furthermore, the client

system has to work with low power consumption. Both aspects, low energy and low cost, were

the main requirements for the design of a keyword detection algorithm that should work reliably

with low computational resources. We keep in mind a realization with small computer devices

like the PI-Zero for example.

Based on an earlier approach [7] we are presenting a modified algorithm in this paper.

We could improve our first algorithm with respect to an easier implementation on devices with

low computational resources and with respect to a higher recognition performance under noisy

conditions.

2 Algorithm

The algorithm for the detection and the recognition of the keyword consists of two stages as

shown in Figure 1. Below, we will present details about the extracted acoustic features, the

GMM-HMM recognition and the neural network.

2.1 Feature Extraction

The speech signal is sampled at a rate of 16 kHz. The short term DFT spectra are calculated

for frames containing 400 samples (= 25 ms) every 10 ms after applying a preemphasis filtering

and weighting the 400 samples of each segment with a Hamming window. The 400 filtered and
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Figure 1 – Two-stage keyword recognition

weighted samples are transformed by means of a DFT with length 512. In our first approach [7]

we applied a noise reduction algorithm to the DFT spectrum. The intention was the reduction

of stationary background noise based on an adaptive filtering in the frequency domain [8].

However, in the practical implementation and realization it turned out, that the estimation of

the noise spectrum as well as the speech artifacts introduced by the adaptive filtering can have

a negative impact on the keyword recognition in noisy conditions. Furthermore, we can reduce

the needed processing power by omitting the filtering stage. The short term logarithmic energy

logE is calculated by taking the logarithm of the sum of the squared DFT magnitude coefficients

in the range between 200 Hz and 7 kHz. Furthermore 12 cepstral coefficients C1 to C12 are

determined by transforming the logarithmic MEL spectrum with a DCT. 36 MEL filters have

been defined in the range from 200 Hz to about 7 kHz to calculate the MEL spectrum from

the magnitude DFT coefficients. The Delta coefficients (∆logE, ∆C1, .., ∆C12) and the second

derivative of the energy contour ∆∆logE are calculated according to the filtering scheme defined

in [9]. The vector containing the 26 components (C1, ..., C12, ∆logE, ∆C1, .., ∆C12, ∆∆logE)

is used as feature vector for the GMM-HMM recognizer. The energy coefficient logE is omitted

due to its varying value in case of background noise.

2.2 Keyword HMMs

We selected the personal name "Esmeralda" as keyword for our investigations that is rarely

used as a given name in Germany and it rarely occurs in German conversations. The word

begins and ends with a vowel. It contains a fairly long sequence of phonemes that supports a

better recognizability. We created two Hidden Markov Models representing the keyword that

are applied for the realization of the first recognition stage.

About 280 recordings of the keyword from about 100 speakers (male and female) are taken

as initial data to train the parameters of the first HMM. At the beginning we collected spoken

keywords with a recording tool where speakers uttered the keyword several times in hands-

free mode at a distance of about 0.5 to 3 m from the microphone. Later on, we added further

recordings where the keyword was spoken during a first application phase of the recognition

system. For data augmentation, we applied a tool [10] to create modified versions of parts of the

collected recordings. This tool allows the creation of modified signals that contain background

noise at a desired signal-to-noise ratio (SNR) and the effects of a hands-free speech input in

reverberant environments. Noise was only added to signals with a good SNR. Noise segments

were randomly extracted from several recordings in different babble noise scenarios. The effects

of recording in hands-free mode is simulated by folding the speech signal with a room impulse

response (RIR). The applied RIR is randomly selected from a collection of responses that have

been determined with an experimental setup in real rooms [11]. Thus, the number of about 280

initial recordings could be increased to a total of about 850 utterances containing the spoken
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keyword. The appropriate tools of HTK [12] have been applied to train the parameters of a

simple left-to-right HMM consisting of 27 states with a mixture of 4 Gaussian distributions per

state. The number of 27 states is chosen as the adequate number to the second triphone based

HMM described below.

The second keyword HMM is built as a concatenation of the 9 triphone HMMs that are

defined by the corresponding pronuncation of the keyword. This leads to a simple left-to-right

HMM consisting of 27 states with a mixture of 8 Gaussian distributions per state. The second

HMM is added as a model that has been trained from more than 100 hundred hours of speech

from different databases. The introduction of the second HMM shall counteract the risk that the

first HMM is trained on a limited number of utterances from a limited number of speakers so

that it does not contain all possible variations of the acoustic features.

2.3 GMM-HMM based recognition with filler models

The sequence of feature vectors as described in section 2.1 and the keyword HMMS as de-

scribed in the previous section are taken to set up a GMM-HMM recognizer as first stage of

the recognition algorithm. A set of 25 monophone HMMs is included as filler models [1] to

perform a recognition with a grammar that is visualized by the transitions between two states in

Figure 2.

Figure 2 – Grammar of first recognition stage

The desired keyword recognition is included as transition from state 1 to state 2 by one of

the two keyword HMMs. The filler models as well as two silence and one babble noise HMM

enable the remaining in state 1. One of the silence models and the babble noise model consist of

3 HMM states. The other silence model has a single state only. The intention is the modeling of

speech not containing the keyword as sequence of filler and/or pause HMMs. This should lead

to the calculation of a higher probability in state 1 in case the speech input does not contain the

keyword. In case of a spoken keyword the probability should become higher in state 2 due to

a better match to one of the keyword HMMs. A critical point is the fast reaction and feedback

in case a keyword is spoken. Therefore, we combine the fulfillment of two conditions as first

detection criterium. The first condition is the determination of a higher probability in state 2 in

comparison to state 1 so that we can assume that a keyword has been spoken. For the second

one we look at this HMM that leads to the calculation of the probability in state 2 according to

the Viterbi decision. In case this HMM is one of the filler or pause models for a few successive

frames we assume that the keyword has been completely spoken. So, we achieve a fast detection

after just a few tens of milliseconds. As second criterium, we look at the number of frames that

lead to the calculation of a higher probability in state 2 in case one of the keyword HMMs is

the starting point according to the Viterbi decision. If this number is larger than 70 frames, we

assume that the keyword has been spoken. In this case, we might even get a reaction already
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before the end of the keyword.

2.4 Keyword verification by means of a neural network

In case the GMM-HMM recognition stage indicates the detection of a keyword, we try to verify

this assumption by a second stage. It is known that the modeling of speech by means of filler

models [1] works quite well, but the expected FAR of this approach is too high for the intended

application. Therefore, we apply a neural network as main component of the second stage. As

input we use the sequence of logarithmic MEL spectra within the speech segment that should

contain the keyword according to the recognition result of the first stage. To get a fixed number

of input coefficients for the neural network we reduce the number of Mel spectra to 50 by the

following procedure. We calculate the spectral differences between all pairs of consecutive log-

arithmic MEL spectra by means of the City block distance. The average of the two spectra with

the smallest difference is determined. Next, the differences between the new average spectrum

and the preceding and the succeeding spectrum are recalculated. We repeat the decrement of

the number of spectra by averaging two spectra until the number of 50 spectra is reached. The

number of 50 is adequate for the fairly long keyword chosen in this work where we found no

utterance with a duration less than 500 ms. The average spectrum is presented in Figure 3 that

has been calculated over the 850 utterances of the keyword used to create one of the keyword

HMMs. We observe a very characteristic spectral pattern where the spectral characteristics of

each individual phoneme get clearly visible.
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Figure 3 – Average MEL spectrogram of the keyword

The input to the neural network consists of 1800 spectral amplitudes from 50 spectra with

36 MEL coefficients. We apply a mean and variance normalization to each spectral pattern

by calculating the mean and the variance over all 1800 spectral parameters of each individual

pattern. We apply a fully connected multi-layer perceptron, consisting of 3 layers. The first

layer consists of 200 nodes, the second of 50 nodes and the output of 2 nodes for the two cases

of a keyword and a non-keyword.

To train the weights of the neural network, we need spectral patterns for spoken keywords

6



as well as for segments where the keyword was erroneously detected by the first stage. About

850 spectral patterns for the spoken keyword can be determined from the utterances that have

been used for training the keyword HMM. To get spectrograms for speech segments where

the keyword was not spoken we applied the detection algorithm of the first stage to German

speech data from different databases [13, 14]. Several thousands of segments were erroneously

detected. Thus, we had about 850 examples of the keyword spectrogram and several thousand

examples of the non-keyword spectrogram available. We applied the tools of [15] to estimate

the weights of the neural network. We trained several networks with an increasing number of

non-keyword spectrograms. Results are presented in the next section.

3 Evaluation

As already mentioned, the performance of keyword detection can be measured by FAR and

FRR. In our application where we want to apply the keyword detection for the activation of

a home automation system, we put a higher priority on lowering the FAR. We have to avoid

any command recognition after an erroneous keyword detection because this could lead to the

uncontrolled activation of devices at home. At the beginning, we investigated the performance

of both recognition stages by means of speech signals available in different databases. After

implementing the algorithm on small computer devices as component of a home automation

system we were able to evaluate the keyword recognition in real application scenarios.

3.1 Speech signals from databases

At the beginning, we applied the first recognition stage to about 30 hours of speech from a

German database [14]. About 7000 segments were erroneously detected that should contain

the keyword. This corresponds to the high FAR of about 190 keywords per hour of speech.

When performing the keyword detection on the 852 utterances containing a keyword, 844 key-

words are recognized. This corresponds to a fairly low FRR. We use the approximately 850

keyword spectrograms and the approximately 7000 non-keyword spectrograms to train a first

neural network NN_V1.

Then, we applied the first recognition stage to about 52.5 hours of speech from another

German database [13]. About 2400 segments were erroneously detected that should contain the

keyword. This corresponds to a FAR of about 46 keywords per hour of speech that is lower in

comparison to the FAR for the first database. But it is still too high for a practical application.

Applying network NN_V1 on the spectrograms of the 2400 erroneously detected segments we

observe that about 80% of the 2400 segments are correctly rejected eventhough we did not use

any data from this database for training the network. As next experiment we randomly selected

1200 non-keyword spectrograms as additional non-keyword examples to train a further network

NN_V2. Applying the remaining 1200 non-keyword spectrograms to this network, only 2.9%

of these 1200 segments are still erroneously recognized as keywords. This would correspond to

a FAR of less than 0.7 keywords per hour for the whole database.

3.2 Practical application

We implemented the algorithm for the keyword recognition on some of the client devices we

have developed within a project to control devices at home by voice. Two of these devices are

shown in Figure 4. They are used to record and play back speech, to control the speech dialogue

and to send commands to a home automation system or directly to controllable devices. The

client devices contain a PI or a PI-zero as computing unit to perform the keyword detection. The

device in the left picture is an integration of all needed components including two microphones
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in an outlet socket. The device in the right picture contains an array of 4 microphones that can

e.g. be integrated in the niche of furniture.

Figure 4 – Two client devices for the voice control of a home automation system

We have run these devices for several weeks in the environment of a laboratory respectively

in a living room. We stored the speech segments and the corresponding MEL spectrograms

when a keyword was correctly or erroneously detected applying the neural network NN_V1

as second stage of the recognition. We observed false detections in cocktail party situations

where a lot people are talking in the background or in situations with an active TV or radio.

We collected 348 segments where a keyword was detected but not spoken. Applying network

NN_V2 instead of NN_V1 about 67% of the segments could be correctly rejected. We trained

a third network NN_V3 after extending the training set used to train NN_V2 by half of the 348

non-keyword spectrograms. Applying network NN_V3 to the other half of the non-keyword

spectrograms we observed a correct rejection of about 95% of the 174 non-keyword segments.

This shows that the performance of the keyword detection can be considerably improved by

adding more data to train the weights of the neural network.

4 Conclusions

The algorithmic details are presented to realize a reliable keyword detection and recognition

for the activation of a speech controlled system. The focus was put on the achievement of a

low false acceptance rate and on the implementation on devices with low computing power.

The algorithm consists of a two stage approach where the first stage is based on a GMM-HMM

recognition including a set of filler models. The FAR of the first stage can be considerably

reduced by analyzing the spectrogram of the pretended keyword segment by means of a neural

network as second stage of the recognition process. It turns out that the FAR can be reduced

further by collecting and including more data for training the neural network. In the future,

besides further increasing the amount of training data we will investigate other types of network

layers like e.g. convolutional layers with the intention of reducing the computational load.
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