
FILTERING-BASED ANALYSIS OF SPECTRAL AND TEMPORAL EFFECTS

OF ROOM MODES ON LOW-LEVEL DESCRIPTORS OF EMOTIONALLY

COLOURED SPEECH

Martin Gottschalk1, Juliane Höbel-Müller2, Ingo Siegert3, Jesko Verhey1, Andreas

Wendemuth2

1 Department of Experimental Audiology, 2 Chair of Cognitive Systems, 3 Mobile Dialog

Systems, Otto von Guericke University Magdeburg

martin.gottschalk@med.ovgu.de

Abstract: Emotion recognition in far-field speech is challenging due to various
acoustic factors. The present contribution especially considers dominant low-
frequency room modes which are often found in small rooms and cause variations
in the low-frequency acoustical response at various listening locations.
The impact of this spatial variation on low-level descriptors, used for feature sets
in speech emotion recognition, has not been analysed in detail so far.
This shortfall will be addressed in this paper, by utilising the well-known bench-
mark dataset EMO-DB providing emotionally coloured speech of high quality. The
measured room response of a speaker cabin is compared with artificial approxima-
tions of its frequency response in the low frequency range. Two techniques were
applied to obtain the approximations: The first technique uses multiple resonant
filters in the low frequency region, whose parameters are determined by a least-
squares fit. The second technique used a modified version of the cabin’s amplitude
spectrum, that was set to unity for higher frequencies and transformed to minimum
phase and to time domain.
To be able to identify the impact of room modes on the low-level descriptors, cor-
relation coefficients between the “clean” and modified EMO-DB utterances are
calculated and compared to each other. Furthermore, a speech emotion recognition
system is used to identify the impact on the recognition performance.

1 Introduction

Voice-based human-machine interaction (HMI) “in the wild” is exposed to varying environment
conditions. It has been analysed in terms of superposed noise [1, 2], robust feature sets [3, 4],
feature pooling [5] or feature degradation for different room acoustics [6] and their impact
on emotion recognition performance [7]. Furthermore, the impact of room acoustic charac-
teristics on specific feature types and the performance of speaker state classification has been
analysed [8, 9, 10]. It could be shown that emotion recognition in far-field speech shows per-
formance drops due to several environmental factors, including background noise, echo, rever-
beration, delay and other.

One factor that has been neglected so far are dominant low-frequency room modes which
are often found in small rooms and cause variations in the low-frequency acoustical response at
various listening locations. This spatial variation impacts the speech signal. Also the low-level
descriptors (LLDs) used in various feature sets for speech emotion recognition are affected.
Therefore, speech emotion recognition may be challenging, for instance, in Ambient Assisted
Living environments, as user’s far-field voice is necessary due to user acceptance considera-
tions.
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The present work analyses the effects of low-frequency room modes as an environmen-
tal factor on the recognition of emotionally coloured speech. Therefore, a room impulse re-
sponse (RIR) of an acoustically damped speaker cabin representing a small room where all
other factors except the low-frequency room modes are suppressed, is measured. Afterwards,
different approximations to the measured RIR are synthesized in order to reduce the temporal
effects while maintaining the frequency response. Both, the originally measured RIR and its
approximated variants are convoluted with acoustic signals from a benchmark dataset of emo-
tional speech, to obtain speech degraded by the acoustic properties of our small room.

Afterwards, the extracted LLDs for the different variants are compared and the influence of
the RIR and its approximations are discussed. To furthermore draw a conclusion regarding the
influence on an emotion recognition system, identical classification experiments are conducted
for both measured and approximated RIRs.

2 Room Modes

The acoustic resonances of standing waves between parallel walls are called room modes. In
general, they cause non-uniform sound fields with large differences in sound pressure depending
on the listening position relative to the nodes and antinodes of a room mode. This results in a
nonuniform frequency response. In typical living rooms, isolated room modes appear mainly
below 200 Hz. In smaller rooms (e. g. bathroom, phone booth), isolated room modes can occur
in a higher frequency range, including fundamentals and formants (F1) of speech.

The frequency of a longitudinal standing wave is given by
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where k is the order of the room mode, c is the acoustic velocity, and L is the respec-
tive room dimension (e.g length). Furthermore, two-dimensional tangential modes and three-
dimensional oblique modes exist, but are typically less relevant. With room length L, width W,
height H and mode orders k, m, n, their frequencies are given by
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In this study, a small recording booth was used. Its most prominent room modes were the
longitudinal modes of the identical length and width dimension at 76 Hz (first order) and 152
Hz (second order), the longitudinal mode of the height dimension at 138 Hz (second order) and
202 Hz (third order).

3 Experimental Set-up

3.1 Emotional Speech Corpus

To enable a valid ground truth and guarantee high quality recordings we utilized the Berlin
Database of emotional Speech (EMO-DB) [11]. This dataset consists of German utterances with
neutral semantic content, uttered by five female and five male professional actors in the seven
basic emotions anger, boredom, disgust, fear, joy, neutral, and sadness. The female speakers
were on average 30.6 ± 5.6 and the male speakers were on average 28.8 ± 3.1 years old.
Overall, the database contains 494 utterances spanning between 2 and 5 seconds.

The high quality samples were originally recorded in an anechoic chamber using a Sennheiser
MKH 40-P48 microphone with a sampling frequency of 48 kHz, later downsampled to 16 kHz.
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In a perception test, conducted by the corpus creators, all samples below 60% naturalness and
80% emotion recognizability were discarded, resulting in 494 phrases. Unfortunately, due to
the removal of several recordings, the gained distribution of emotional samples is unbalanced.

3.2 Measuring the RIR

In order to measure the RIR, we used a hardware setup, which is characterized by a highly
linear frequency response. In particular, we used a Behringer ECM8000 ultra-linear condenser
microphone with omnidirectional pattern, a Yamaha 01V96i audio interface and a Neumann
KH120A loudspeaker. We applied CARMA Version 4.0, a room acoustics analysis program,
to determine the RIR and the resulting amplitude response, based on a logarithmic sinusoidal
signal in 44.1 kHz as the measuring stimulus. The sinusoidal signal was played and re-recorded
in a small room with the dimensions 2.22 m × 2.22 m × 2.44 m (length × width × height).

By Matlab-based convolving each EMO-DB utterance with a RIR of our small room, we
obtained emotionally expressive speech, which is degraded by the acoustics of the room. This
degradation can be considered as a combination of primarily temporal effects (reflections, re-
verberation) and primarily spectral effects. In order to separate spectral and temporal impacts,
the temporal impacts were mitigated. This allows to compare the results with the original room,
so that the effects of spectral and temporal component can be compared.

3.3 Mitigating Room Modes’ Temporal Component’s Effect on Speech

The RIR was separated into a low-frequency and a high-frequency part, assuming that room
modes are not relevant for frequencies higher than 250 Hz. A crossover filter with 24 dB/octave
was used to achieve that. The high-frequency part contained mainly comb filtering in the fre-
quency space, which corresponds to reflections in the time space. The high-frequency part was
replaced by a unity response to remove those reflective characteristics. Merely high-frequency
roll-off was applied to emulate the original high-frequency roll-off of the RIR due to the record-
ing equipment and wall damping. The low-frequency part was treated in three different ways,
corresponding to the three investigated conditions.

a) Multiple Infinite Impulse Response (IIR) Filters were used to emulate the spectral prop-
erties of the original RIR. For this purpose, a set of filters was chosen that is sufficient
to replicate the rough structure of the amplitude spectrum in the low-frequency part. The
parameters of these filters were fitted to the amplitude spectrum using a nonlinear least-
squares algorithm, after a 1/3-octave wide spectral smoothing. In the case of the studied
RIR, two high-pass filters and five peaking EQ filters, also known as bell filters, were
used, each one of second order. The combination of these filters was converted to time
space. This way, we obtained an artificial RIR that approximates the spectral changes by
the room modes without reflections or reverberation. This condition will be referred to as
“Filters” in the following.

b) The low-frequency part of the RIR was converted to a minimum phase (MP) response by
an operation in the complex cepstrum space. The right side of the cepstrum corresponds
to maximum-phase zeros. Flipping the right side and adding it onto the left side leads to
a minimum-phase cepstrum. This was inversely transformed back to the time space. The
amplitude response was not changed by that operation. This condition will be referred to
as “Low-freq MP” in the following.

c) The low-frequency part of the RIR was not changed. This means that all temporal aspects
of the low-frequency response were conserved. This condition will be referred to as
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“Low-freq” in the following.

3.4 Extracting Low Level Descriptors (LLDs)

We extracted 26 low-level descriptors (LLDs) from the clean EMO-DB utterances as well as
from the utterances convoluted with the original RIR and with the artificial ones. By applying
the openSMILE toolkit [12], the LLDs were extracted on a 25 ms frame-level regarding the
benchmark emobase configuration. In particular, these LLDs belong to loudness-, cepstral-,
LPC-, waveform- and pitch-related feature groups.

3.5 Extracting Spearman’s Correlation Coefficient for Low Level Descriptors (LLDs)

We intended to compare a clean utterance with a time-aligned synthesised one (cf. 3.3). As both
utterances originated by the same speaker, we would assume a linear association between them
and consequently between their LLDs. Visual examination of randomly chosen scatter plots
seemed to confirm this assumption. The Pearson product moment correlation rp coefficient
is a measure in order to estimate the degree of linear association between two variables [13].
Assuming measurements on two LLDs X and Y for n samples, the paired LLD values can be
written as (x1, y1), (x2, y2), ... , (xn, yn), where xi, yi should be normally distributed. Then, the
sample Pearson product moment correlation coefficient, rp, is defined as

rp(X ,Y ) =
Cov(X ,Y )

√

Var(X)Var(Y )
. (1)

As rp relies on normally distributed LLD values, we tested our data for normal distribution.
One-sample Kolmogorov-Smirnov tests [14] rejected the null hypothesis that a LLD comes
from a standard normal distribution at a corrected 5 % significance level. In contrast, the Spear-
man rank correlation coefficient rs, does not require the assumption of normality, which mo-
tivated us to apply it. rs was obtained by ranking the values of two LLDs and calculating the
Pearson correlation coefficient rp and the population value by ps, on the resulting ranks. Equa-
tion 1 may be used to calculate rs if (xi, yi) are replaced by their ranks (ri, si) [13].

3.6 Emotion Recognition Experiments

To perform the emotion recognition experiments, state-of-the-art automatic recognition exper-
iments comparable to [15] are conducted. In contrast to them, it is opted for a Leave-One-
Speaker-Out (LOSO) validation scheme to better represent realistic applications.
For feature extraction, the same feature set as for the statistical analyses has been used, with the
only difference that the functionals are used, resulting in 988 features characterizing the super-
segmental distribution per utterance. Afterwards, standardization as normalisation technique is
used to eliminate differences between the data samples [16]. As recognition system, a SVM
with linear kernel and a cost factor of 1 was utilized with WEKA [17]. As performance mea-
sure, the F-measure (FM) were calculated as the average over the single speaker’s performance
measure.

4 Results

4.1 Analysis of Room Impulse Responses

The RIR of the speaker cabin and the artificial RIRs as described in section 3.3 are shown in
Fig. 1. In Fig. 1 a), all RIRs show a main peak corresponding to the direct sound (partly not vis-
ible behind the green line). The “Original” RIR also shows several smaller peaks corresponding
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Figure 1 – The original RIR (in grey color) in comparison to the three artificial RIRs (Low-freq in
yellow color, Low-freq Minimum Phase in dark red color and the fitted Filters in green color). Fig. 1 a)
and b) show time domain representations and Fig. 1 c) shows a frequency domain representation of the
same RIRs.

to reflections for example from the side wall approximately 2.4 ms after the main peak. The
artificial RIRs do not show these reflections, as discussed in section 3.3. A longer section of
the RIRs is shown in Fig. 1 b). The plot shows, that the decay of the “Original”, “Low-freq”
and “Low-freq MP” RIRs is similar, whereas the decay of the “Filters” RIR is much faster than
the others. Figure 1 c) shows, how the impact of all three artificial RIRs (“Low-freq”, “Low-
freq MP” and “Filters”) is limited to the lower frequency range roughly below 250 Hz. Also,
the high-frequency roll-off due to the recording equipment and wall damping around 10 kHz is
visible.

4.2 Analysis of Correlation Coefficients

In the first part of our statistics-related analysis, we answer the question how many correla-
tion coefficients significantly differ from zero, with regard to the four experimental conditions
“Original”, “Low-freq”, “Low-freq MP” and “Filters”. So, in each experimental condition, we
analyse 26 LLDs × 494 utterances resp. 12844 Spearman’s correlation coefficients to quantify
the strength of association between “clean” LLD series from clean speech and the correspond-
ing LLD series from the four above mentioned experimental conditions. Note that the “Orig-
inal” condition refers to the LLD series corresponding to EMO-DB, which was convolved by
the speaker cabin’s RIR, and not refers to clean speech. By examining the single Spearman’s
correlation coefficients in the four experimental conditions, we observed a slightly increasing
number of LLD series, which strongly correlate with the “clean” LLD series. In particular, 96 %
in the “Original” condition, 97 % in the “Low-freq” condition, 97 % in the “Low-freq MP” and
98 % in the “Filters” condition significantly differ from rs = 0 at the Bonferroni-corrected 5 %
significance level.

In the second part of our analysis, we answer the question of how strong is the correlation
between “clean” LLD series and LLD series originating from the four conditions. To answer
this question, we statistically analyse the distribution of coefficients, which significantly differ
from zero (cf. previous question), by using box plots. These are generated by using Matlab. In
Fig. 2, box plots [18] show the distribution of the Spearman’s correlation coefficients across the
four experimental conditions “Original”, “Low-freq”, “Low-freq MP” and “Filters”.

An increasing median rs across the conditions can be observed. We obtained an increasing

223



Figure 2 – (a) Boxplots for depicting sets of Spearman’s correlation coefficients. Each coefficients’
set corresponds to one experimental condition described in Sec. 3.3. (b) A glimpse of the association
strength between loudness-, cepstral-, LPC-, waveform-, and pitch-related LLD series.

median of 0.81 in the “Original”, 0.83 in the “Low-freq”, 0.86 in the “Low-freq MP” and 0.92 in
the “Filters” condition. Regarding the upper and lower quartiles, the correlation coefficients de-
viate similarly. Every condition contains outliers representing negative correlation coefficients
in the range from rs = −0.3 to rs = −0.7. In particular, 3.2 %, 2.6 %, 4.1 % and 5.2 % of the
correlation coefficients across the different conditions are outliers.

In the third part of our analysis, we give a glimpse with respect to the strength of associ-
ation between the LLD series regarding the emobase feature group’s loudness, cepstral, LPC,
waveform, and pitch. In order to do that, we averaged the corresponding correlation coefficients
per feature group and summarised the results in Fig. 2 b). In Fig. 2 b) one can see the trend
of increasing LLD correlation coefficients per feature group, which we have already indicated
before in Fig. 2 a). Additionally, the cepstral-related correlation coefficients clearly differ from
the LPC-, the waveform-, and, last, the pitch-related ones.

Table 1 – Emotion recognition performances (F1 score) for different experimental conditions and signif-
icance measures. The identifiers correspond to the conditions presented in Sec. 3.3 or the ones presented
in Fig. 1.

Identifier F1 (std) [%] Significance level

Clean EMO-DB (baseline) 78.18 (0.631) –
Original (degraded by RIR) 73.63 (0.104) p < 0.001

Low-freq 73.60 (0.706) p < 0.001
Low-freq MP 75.69 (0.789) p < 0.001

Filters 74.97 (0.654) p < 0.001

In the last part of our analysis, we present emotion recognition performances (F1) based on
standardised emobase feature values, Support Vector Machines (SVMs) and a LOSO evaluation
design. Our baseline is represented by the emotion recognition performance in clean speech. In
Tab. 1, one can see the F1 values for each experimental condition. As expected, the best per-
formance is obtained for the baseline, which is followed by the “Low-freq MP” and “Filters”
condition. These results in turn are followed by the “Original” and, last, by the “Low-freq” con-
dition. By using a one-sided ANOVA, we show that the recognition results differ significantly.
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5 Discussion and Conclusion

The room modes analysed in this work only have a small impact on the emotion recognition
performance measure compared to the baseline. Increasing emotion recognition performances
come slightly along with the mitigation of room modes’ temporal effect in speech. In the “Fil-
ters” condition, the spectral changes by the room modes without reflections or reverberation

were approximated, whereas all temporal aspects of the low-frequency room response were
conserved in the “Low-freq” condition. The F1 values for the “Filters” and “Low-freq” condi-
tion suggest a larger temporal-related impact on speech, however the results only slightly differ.

The increasing F1 values are slightly accompanied by the correlation-based results, which
are presented in Fig. 2. The slight descent in recognition performance for the last “Filters” con-
dition is not in accordance with the fact that the aggregated correlation coefficients are highest
compared to the other conditions. Another factor, the increasing number of negative correla-
tion coefficients (outliers) across the conditions mentioned, comes along with the recognition
results. In particular, 3.2 %, 2.6 %, 4.1 % and 5.2 % of the correlation coefficients across the
different conditions are outliers. Obviously, the first two and the last two percentages are lo-
cated close together and seem to form two clusters. Two clusters can also be observed in the
recognition results presented in Tab. 1. Both in the outlier and recognition results clustering,
we can observe the same experimental conditions pairs. Due to this similarity in condition
membership, one can conclude that the recognition results are accompanied by the positive and
negative correlated LLD series in combination.

In total, the effect of the room acoustics of the speaker cabin on the emotion recognition
performance were small across all conditions (no larger than 5 % difference). Minimum-phase
conditions (“Filters”, “Low-freq MP”) showed a slightly better performance than non-minimum
phase conditions. This could imply, that emotion recognition is more robust against spectral
than temporal effects of room acoustics. However, the obtained differences are too small to
draw firm conclusions. Regarding far-field applications, an automatic analysis of a sinus sweep
could give a glimpse of feature group-related distortions and motivate context-based feature
selection.
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