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Abstract: In music analysis, one of the most fundamental tasks is note onset detec-
tion — detecting the beginning of new note events. It is the basis for more high-level
tasks, such as beat tracking or tempo detection. The main outline of all approaches
for onset detection is roughly the same: The audio signal is transformed into an
Onset Detection Function (ODF), which is zero for most of the time but has pro-
nounced peaks in case of onsets. Applying peak picking algorithms on the ODF, the
onset times can be extracted. Currently, Convolutional Neural Networks (CNNs)
define the state of the art. In this paper, a first exploration of Echo State Networks
(ESNs) to obtain an ODF is presented. ESNs have achieved comparable results to
CNNss in several recognition tasks, such as speech and image recognition. Features
were extracted using a bank of filters with a logarithmic frequency spacing. The
feature vectors were fed into the ESN that computed the ODF. Applying a sim-
ple threshold-based peak picking algorithm on the ODF, the onsets were detected.
For the hyperparameter optimization, a dataset with pre-defined splits for an 8-fold
cross validation was used. With all hyperparameters optimized, we reached an
F-Measure of 0.812 using a bidirectional ESN with 8000 neurons.

1 Introduction

In music analysis, one of the most fundamental tasks is note onset detection. The onset is
defined as the beginning of a new note event in an acoustic signal. It serves as the basis for
more high-level tasks such as beat tracking or tempo detection, which need information about
the temporal evolvement of a note sequence. The main outline of all approaches for onset
detection is roughly the same: The audio signal is transformed into an Onset Detection Function
(ODF), which is zero for most of the time, and has pronounced peaks in case of onsets. Thus,
applying peak picking algorithms on the ODF, the onset times can be extracted.

The most common algorithms for onset detection are based on spectral differences or phase
deviations [1] between adjacent frames. Therefore, different signal transformations, such as
short term spectra [1] or filterbanks [2, 3], can be used. Depending on the kind of onsets to
be detected, spectral differences or phase deviations lead to clear peaks and have low computa-
tional costs.

More recent approaches to obtain an ODF are based on machine learning techniques.
Marolt et al. [4] used neural networks to improve a peak picking process applied on their ODF.
However, this approach was restricted to the piano. Lacoste and Eck [5] were the first ones to let
a neural network learn the ODF from feature vectors, in their case it was a simple feed forward
network. Later, Eyben et al. [6] used a neural network with Bidirectional Long-Short-Term
Memory cells (BLSTMs), which achieved an F-measure (see below) of 0.873 , which was the
state of the art. Schliiter and Bock [7] used Convolutional Neural Networks (CNNs) for the
same task. This approach improved the results for onset detection again significantly, reaching
an F-Measure of 0.903.
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Echo State Networks (ESNs) by Herbert Jaeger [8] are a special kind of Recurrent Neural
Networks (RNNs). Although they are rather unknown, in the past years, they have achieved
comparable results to CNNs in several recognition tasks, for example in speech and image
recognition [9, 10]. Furthermore, they achieved the best ranking during the last MIREX chal-
lenge [11] for multipitch tracking. In this paper, the potential of ESNs for onset detection was
explored. They have several beneficial properties for this task:

e Because of their recurrent connections, ESNs are suitable for processing temporal infor-
mation.

e The training procedure is much easier than for concurrent approaches, due to less free
parameters.

2 Onset Detection with Echo State Networks

Echo State Networks (ESNs) are a kind of Recurrent Neural Network (RNN). Usually, RNN
architectures consist of sequential layers with connection weights to be trained using time-
dependent Backpropagation. The fundamental difference of ESNs is their simple architecture,
consisting of input and recurrent connection weights, which are fixed random values. Only the
output weights are trained using linear regression.

Because of the recurrent connections inside the reservoir, information from previous inputs
is retained inside the ESN for a certain amount of time. Depending on the choice of hyper-
parameter values, the reservoir acts as a long- or short-term memory. The neurons inside the
reservoir are non-linear, typically using sigmoidal activation functions. Thus, the reservoir acts
as a non-linear transformation of the low-dimensional input space into a high-dimensional fea-
tures space, where the desired output is a multi-linear function of the transformed features. The
main outline of the proposed ESN-based model for onset detection is depicted in Figure 1.
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Figure 1 - Outline of the ESN-based proposed model: The input signal s[k] with the sample index k was
divided into overlapping frames, from which normalized feature vectors u[n] were extracted and fed into
the reservoir using the input weight matrix W, The reservoir consists of unordered and via the reservoir
matrix W™ sparsely connected neurons. The one-dimensional output y[n] is a linear combination of the
reservoir states r[n] and the output weight matrix W, which was trained using linear regression. The
output serves as the ODF, in which onsets were extracted usign a peak picking algorithm.

2.1 Feature extraction

The input signal s[k] with the sample index k and a sampling frequency of 44.1 kHz was divided
into overlapping frames with a frame rate of 100 Hz and the frame index n. Each frame was
windowed using a Hann window with 2048 samples. The windowed frames were transformed
into the frequency space using the short-term Fourier transform. Next, a triangular filterbank
with 12 filters per octave and the frequency range of 27.5 Hz to 16000 Hz was applied to every
short-term spectrum to reduce the dimension and to introduce a semitone frequency spacing.
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At last, the logarithm of the magnitude was taken. Because onsets are strongly correlated with
energy changes in frequency bands, in many cases, such as [6], the spectral flux is added to
the feature vector. Therefore, the first order difference between adjacent feature vectors was
computed. Negative differences were set to zero, and this half-wave rectified vector appended
to the features described above. This led to a feature vector size of N™ = 160.

2.2 Echo State Network (ESN)

The main outline of an ESN is depicted in the center of Figure 1. It consists of the input weights
Win_ the reservoir weights W™ and the output weights WU,

The input weight matrix W™ has the dimension of N x N where N = 160 and N
are the size of the input feature vector and the size of the reservoir, respectively. All values
in this matrix were initialized from a uniform distribution between +1.0. Next, each node
of the reservoir was only connected to K™ = 10 randomly selected input entries. The other
connections were set to zero, leading to a very sparse matrix W'". The input weight matrix was
then scaled using the input scaling factor oy, which was a hyper-parameter to be tuned.

The reservoir weight matrix W™ is a square matrix of the size N™ x N™, which was
also 1nitialized from a standard normal distribution. Each reservoir node received values from
only K™¢ = 10 randomly selected other nodes. The other connections were set to zero. The
reservoir matrix W™® was normalized by its largest absolute eigenvalue to achieve a spectral
radius p = 1.0, because it was shown in [8] that the echo state property holds as long as p < 1.0.
By tuning ogy and p, it is possible to balance, how strongly the network memorizes past inputs
compared to the present input.

If r[n] represents the reservoir state, the basic equations to describe the ESN can be written
in the following way:

r[n] = (1= A)r[n — 1]+ A fros(W™uln] + Wr[n — 1] + W) (1)

y[n] = Wr[n] 2)

Equation (1) is a leaky integration of the reservoir neurons. Depending on the leakage
A € [0, 1], the reservoir can act as a long-term or a short-term memory. The reservoir activation
function fies(+) controls the non-linearity of the system. Here, the tanh-function was used,
because its lower and upper boundaries of 1 ensure stable reservoir states. The bias vector
WY with N dimensions is an additional bias term, which consists of fixed random values
from a uniform distribution between £1.0 and multiplied by the hyper-parameter o, which
was used to scale the non-linearity of the system.

Equation (2) shows how to compute the N°"-dimensional output vector y[r] from a given
reservoir state r[n|, which was expanded by one bias term. The output is obtained by a linear
combination of the reservoir state and the output weight matrix W°", For training, all reser-
voir states were collected in the reservoir state collection matrix R, and expanded by one bias
term.The desired outputs d[n], which was 0.0 for non-onsets and 1.0 for onsets were collected
into the desired output collection matrix D. Afterwards, W' was obtained using regularized
linear regression (3), i.e. ridge regression to prevent overfitting to the training data. The regu-
larization parameter € = 0.01 penalized large values in W%, and I is the identity matrix.

W — (RRT +-¢I) ' (DR") 3)
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The size of the output weight matrix (N°" x N™S + 1) determines the total number of free
parameters to be trained in ESNs. The output y[r] corresponded to the onset detection function
ODF.

Bidirectional reservoirs

In the case of bidirectional reservoirs, the input was first fed through the ESN as described
before. Before the linear regression, the inputs were reversed in time, and again fed into the
same reservoir. Afterwards, the reservoir states were again reversed in time. The reservoir state
collection matrix R was finally built by combining the states from the forward and backward
pass. This doubled the number of free parameters for the linear regression. For example, the
number of features for a reservoir with 500 neurons is 500 in the unidirectional and 1000 in the
bidirectional case. The final training remained the same as before.

2.3 Peak Picking

After the linear regression, the output indicated an onset or non-onset. Ideally, it would be
zero for a non-onset and one for an onset. However, due to the linear regression, the output is
neither binary nor bounded between zero and one. Furthermore, treating onset detection as a
classification problem, the ratio between onsets and non-onsets is highly imbalanced. Thus, it is
likely that note onsets are characterized by peaks, which had not always the same height.Thus,
the output was considered to be an onset detection function (ODF), in which onsets can be
detected using a peak picking algorithm. In this paper, the simple threshold-based peak picking
algorithm proposed in [7] is used. At first, the ODF is smoothed using a Hanning window with
5 samples. Next, local maxima greater than a tunable threshold 6 were detected. The locations
of the resulting peaks were considered to be onsets.

3 Experimental setup

3.1 Dataset

To evaluate the capability of ESNs for onset detection, the dataset introduced by Bock in [12]
was used. It consists of around 102 min of audio files sampled at 44.1 kHz and 27700 annotated
onsets. The database is already split into eight subsets for an 8-fold cross validation. We used
six subsets to train the ESN and one subset as a validation set to tune the hyperparameters. After
fixing the hyperparameters, the final model was trained using seven subsets and tested on the
eigth unseen subset.

The audio data consists of all important types of onsets, e.g. hard, soft and complex mix-
tures. The excerpts are from various genres, such as rock, pop, jazz and classical music. Be-
cause the dataset was already used for several evaluations of algorithms for onset detection, we
could directly compare the results of our cross-validation with state of the art algorithms, e.g.
the CNN-Onset-Detector [7], which is the best performing algorithm.

3.2 Measurements

We compared our results with the state of the art algorithms and report different error measures
using the madmom-library [13] with the same settings as used in [7]. Therefore, the detected
onset times were compared to the reference onset times. If an onset was detected in a time-
window of £25 ms around a reference, it was considered as a true positive (TP). If no onset was
detected in the window around a reference, it was considered as a false negative (FN). If any
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onset was detected outside the window, it was a false positive (FP). With these notations, the
following three measurements can be defined:

The Precision P is the ratio of all correctly detected onsets to all detected onsets. It is 1.0 if no
false positives were recognized, and 0.0 if no correct onsets were recognized at all.

TP

P= e
TP+ FP

The Recall R is the ratio of all correctly detected onsets to all correctly detected and forgot-
ten onsets. It is 1.0 if no false negatives were recognized, and 0.0 if no correct onsets were
recognized at all.

R— TP 5)
~ TP+FN
The F-measure F is the harmonic mean of Precision and Recall.
P-R
F=2.—— (6)
P+R

In this paper, F served as the objective function to determine the peak picking threshold 6.

3.3 Implementation and optimization strategy

The algorithm was developed in Python 3. Table 1 shows the hyper-parameters to be optimized
and the final result. The optimization process was conducted using a sequence of grid and line
searches.

Hyperparameter = Range Step Final value

Input scaling ay  [0.0,1.5] 0.1 0.3
Spectral radius p  [0.0,1.5] 0.1 0.7
Bias scaling o~ [0.0,1.5] 0.1 0.1
Leakage A (0.0,1.0) 0.1 1.0

Threshold & [0.2,0.4] 0.02 0.3

Table 1 — Overview over all hyperparameters to be tuned. The values show the search range and the
step size, in which the exhaustive grid search took place. The final values were fixed for the evaluation.

The optimization workflow to fix the ESNs hyperparameters consisted of three steps:

1. The starting point was a grid search across oqy and p. These two hyperparameters needed
to be optimized together to determine a trade-off between forward and recurrent connec-
tions. Therefore, oy and A were fixed to their default values 0.0 and 1.0.

2. Next, a line search was conducted to optimize ag, while the default value for A was kept
constant. This parameter changes the default operating point of the non-linear neurons
in the reservoir, which led to additional non-linearity for the system. Thus, for more
non-linear tasks, we expect Qg to increase.
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3. Finally, A was optimized using a line search. This parameter determines the different
temporal evolutions of the input compared to the output.

For every parameter combination during this optimization workflow, the cross-correlation
between the target and the computed output was reported on the validation set. This was done
separately for each of the eight folds. Next, the mean cross-correlation over all folds was
computed. After each step, the hyper-parameters leading to the highest mean cross-correlation
were fixed and used for the optimization of the next parameter.

The reservoir size was fixed to 500 during this optimization process. It has been shown that
the reservoir size tends to be independent from all other hyperparameters [14, 10]. For the later
evaluation, it was increased up to 8000 neurons.

After fixing all hyper-parameters, the peak picking threshold was found by a line search to
maximize the F'-measure.

4 Results

Table 2 presents the detection result of the proposed ESN-based model with different reservoir
sizes and the current state of the art models. The results show that increasing the reservoir size
clearly improved the recognition result. Using a bidirectional instead of an unidirectional reser-
voir also increased the F-measure because of more free parameters. For now, the bidirectional
model with 8000 reservoir neurons performs best. Compared to the state of the art [6] and [7],
which use BLSTMs and CNNs, respectively, the ESN still has a lower F'-measure.

Model Threshold unidirectional bidirectional

N™s o P R F P R F
500 0.28 0.843 0.694 0.761 | 0.841 0.716 0.773
1000 0.28 0.852 0.720 0.781 | 0.872 0.721 0.789
2000 0.28 0.855 0.744 0.796 | 0.861 0.747 0.800
4000 0.3 0.879 0.740 0.804 | 0.860 0.762 0.808
5000 0.3 0.877 0.741 0.803 | 0.857 0.764 0.808
8000 0.3 0.870 0.750 0.806 | 0.854 0.774 0.812
BLSTM [6] | — 0.892 0.855 0.873
CNN [7] - 0.917 0.889 0.903

Table 2 — P, R and F for different models evaluated using the 8-fold cross validation. The reference
models were evaluated on the same dataset by the authors.

Figure 2 visualizes the input features, ground truth, ODF and detected onsets of the song
“sb_Albums-Chrisanne2-01(16.0-26.0)” from the test set. It was a typical example from the test
set and obtained with the unidirectional model with 500 reservoir neurons. Obviously, many
onsets were forgotten in this example. However, the number of false positives is quite small. It
is almost representative for the current performance of the smallest model.

5 Conclusions and outlook

We presented a new approach for onset detection in musical signals based on ESNs. The results
show that this very first attempt still falls short to the state of the art, but is promising given
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Figure 2 — Input features, ODF, ground truth and detected onsets for the example “sb_Albums-
Chrisanne2-01(16.0-26.0)” from the test set. The unidirectional model with 500 reservoir neurons
achieved an F-measure of 0.750. There were in total 18 correct, 2 false positive and 10 false nega-
tive decisions.

the early stage of the investigations into ESNs. There are a lot of improvements that can be
incorporated in the current system. We noticed that the F-measure did not yet stop increasing
with the current number of neurons. Thus, the number of reservoir neurons can still be increased
until the reservoir starts overfitting on the training data. Furthermore, the input features can be
expanded. Both state of the art systems are using a kind of multi-resolution features, e.g., the
feature extraction as described in this paper is done with three different window sizes for the
FFT. Furthermore, we did not incorporate any kind of feature normalization. In [9, 10, 11],
multiple reservoirs are stacked and it has been shown that additional reservoirs can correct
errors from previous layers.
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