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Abstract: We investigate densely connected convolutional networks (DenseNets)

and their extension with domain adversarial training for noise robust speech recog-

nition. DenseNets are very deep, compact convolutional neural networks which

have demonstrated incredible improvements over the state-of-the-art results in

computer vision. Our experimental results reveal that DenseNets are more robust

against noise than other neural network based models such as deep feed forward

neural networks and convolutional neural networks. Moreover, domain adversarial

learning can further improve the robustness of DenseNets against both, known and

unknown noise conditions.

1 Introduction

In the last years, automatic speech recognition (ASR) performance has been significantly im-

proved through the use of neural networks with deep structures [1, 2, 3]. Various neural network

architectures have been developed to improve ASR performance. They are variations of time

delay neural networks (TDNNs) [4], convolutional neural networks (CNNs) [5] recurrent neural

networks (RNNs) [6], and their combinations [7]. Among them, very deep CNNs demonstrated

impressive performance [8, 9, 10] especially in noisy conditions [8].

Recently in the computer vision research community, densely connected convolutional net-

works (DenseNets) have obtained significant improvements over the state-of-the-art networks

on four highly competitive object recognition benchmark tasks [11]. The idea is to introduce

shorter connections between layers close to the input and those close to the output which alle-

viate the vanishing-gradient problem. Furthermore, DenseNets requires fewer parameters than

traditional CNNs with the same deep structure [11]. In [12], we showed that DenseNets can be

used for acoustic modeling achieving impressive performance.

In this paper, we explore noise robustness of DenseNets and their extension with domain

adversarial learning. This method was originally proposed by Ganin et al. [13] for unsupervised

domain adaptation in natural language processing and was then applied to deep feed forward

neural networks (DNNs) for noise robust speech recognition [14, 15]. However to our best

knowledge, domain adversarial learning has never been examined with a complex network like

DenseNets before. Our experimental results on noisy data demonstrate that DenseNets can

effectively improve the noise robustness of the system outperforming other neural based models.

Using domain adversarial learning can further improve their robustness against both, known and

unknown noise conditions.
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2 Methods

2.1 DenseNets Acoustic Models

In this subsection, we first describe DenseNets and review the method how to use DenseNets

for acoustic modeling [12]. The key idea of DenseNets is the introduction of shorter con-

nections between layers close to the input and those close to the output which alleviate the

vanishing-gradient problem. For acoustic modeling, DenseNets take the unadapted features

40-dimensional log Mel filterbank as input and predict the context dependent HMM states

(senones) [12].

Given an input x0 and a CNN with N layers, where each layer n is equipped with a nonlinear

transformation Hn(·) which is the composition of three consecutive operations: batch normal-

ization, followed by a ReLU and a 3× 3 convolution, DenseNets introduce direct connections

from any layer to all subsequent layers. The output of nth layer is:

xn = Hn([x0,x1,x2, ...,xn−1]) (1)

where [x0,x1,x2, ...,xn−1] refers to the concatenation of the feature maps yielded in all the pre-

vious layers. Fig. 1 illustrates the dense connectivity structure, in which each layer takes all

preceding feature-maps as input. This structure is called dense block.

Figure 1 – A 3-layer dense block, in which each layer takes all preceding feature-maps as input

DenseNets consist of multiple dense blocks, connected in series and separated by transi-

tion layers. Each transition layer consists of a 1× 1 convolution layer and a 2× 2 average

pooling layer. Fig. 2 illustrates how these dense blocks and transition layers are composed in

DenseNets. Note that pooling is only performed outside of dense blocks.

Figure 2 – A DenseNet architecture with three dense blocks connected via transition layers

Furthermore, DenseNets reduce the number of feature-maps by 1×1 convolution layer in

the transition layer to improve model compactness. For example, if a dense block has y feature-

maps, the transition layer generates ⌊θy⌋ output feature-maps, where θ is the compression

factor and the range is 0 < θ ≤ 1. The growth rate of DenseNets is the number of channels in

their convolution layers. By equation (1), the nth layer within a dense block has k× (n−1)+k0

input feature-maps, where k0 is the number of input channels and k (the model’s growth rate) is

the number of channels for subsequent convolution layers. DenseNets have better performance

when k is a small integer, e.g. k = 12 [11].
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Figure 3 – An architecture of DenseNets with domain adversarial learning which consists of

there sub-networks: features extractor sub-network (x), senone classification sub-network (y)

and domain classification sub-network (z)

2.2 Domain Adversarial Learning

In this subsection, we introduce the extension of DenseNets with domain adversarial learning

[13]. In this context, noisy conditions act as domain information.

The overall architecture of the domain adversarial learning of DenseNets is shown in Fig 3.

It consists three sub-networks: the sub-network (y) is for senone classification, the sub-network

(z) is for domain classification and the share-network (x) is the share part of the two tasks. The

shared-network (x) can be seen as a feature extractor to convert an input vector to its latent

representation. Each output sub-network acts as a classifier to calculate posterior probabilities

of classes given the this latent representation [14, 15]. In the domain adversarial learning, the

representation is learned adversarially to the domain classification and friendly to the senone

classification, so that domain-dependent information to the senone classifier is removed from

the representation.

Let θx,θy,θz denote the parameters of the share-network (x), sub-network (y) and sub-

network (z), respectively. The cross-entropy loss functions for the senone classifier and domain

classifier are defined as

Ly(θx,θy) =−∑
i

logP(yi|xi;θx,θy) (2)

Lz(θx,θz) =−∑
i

logP(zi|xi;θx,θz) (3)

The parameters are updated as

θy← θy− ε
∂Ly

∂θy
(4)

θz← θz− ε
∂Lz

∂θz
(5)
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θx← θx− ε(
∂Ly

∂θx
−λ

∂Lz

∂θx
) (6)

where λ is the gradient reversal coefficient which is a positive scalar parameter to adjust the

strength of the regularization.

The first layer of the sub-network (z) is the gradient reversal layer (GRL) as proposed in

[14]. In the forward propagation phase, the GRL just passes the input to the output as follows:

ξout ← ξin (7)

where ξin and ξout represent input and output vectors of the layer, respectively. In the backward

propagation phase, the GRL reverses the gradient by multipling it with λ as follows:

∂L

∂ξ in
←−λ

∂L

∂ξ out
(8)

Hence the shared-network (x) is trained adversarially to the sub-network (y) for the domain

classification. When the training is finished, the output of the entire network (x, y) for the

senone classification is used for decoding.

3 Setup

Two experiments are conducted in this paper. The goal for the first experiment is to explore

DenseNets’ robustness at different levels of noise. We compare the baseline models, which are

deep neural networks (DNNs), CNNs and TDNNs, and DenseNets on noise corrupted DARPA

1000-words English language Resource Managemen (RM). The second experiment examines

the effectiveness of domain adversarial learning, in which we compare the performance of

DenseNets, DenseNets-AD and the best baseline model TDNNs on noise corrupted RM and

Aurora 4 Task (Aurora4).

3.1 Resources

3.1.1 Data

The noise corrupted RM is made by artificially adding different types of noise at different values

of SNR 1 to RM [16] using the large-scale open-source acoustic simulator developed in [17].

It contains 1,993 noisy conditions: 1,500 are used for training and 493 for testing. We created

three noise corrupted data sets with different SNRs: Data-1 (SNR from 0 to 4), Data-2 (SNR

from 0 to 8) and Data-3 (SNR from 0 to 12). Figure 4 shows the data distribution of Data-

1, Data-2 and Data-3. For example, 19.9% utterances in Data-1 are adding noise (randomly

chosen) at SNR=0, 20.3% of them are at SNR=1, 19.6% of them are at SNR=2, 21.2% of them

are at SNR=3 and 19% of them are at SNR=4. Two noise corrupted test sets are used in this

paper. In the "known-noise test set" (KNN), the noise is randomly picked from 1,500 training

noise and added to the utterance at the same range of SNR used in the training set. On the

contrary in the "unknown-noise test set" (UKN), the noise is selected from 493 testing noises

and added to the utterance.

The Aurora 4 task, which is a medium vocabulary task speech recognition task, is based

on the Wall Street Journal (WSJ0) dataset [18]. It contains 16 kHz speech data in the presence

of six additive noises (car, crowd of people, restaurant, street, airport and train station) with

1Signal-to-Noise ratio (SNR) is defined as the ratio of the power of a signal to the power of noise (
Psignal

Pnoise
)
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Figure 4 – The data composition of Data-1, Data-2 and Data-3 from left to right.

linear convolutional channel distortions. The multi-condition training set with 7138 utterances

from 83 speakers includes a combination of clean utterance and utterance corrupted by one of

six different noises at 10-20 dB SNR. 3,569 utterances are from the primary Sennheiser micro-

phone and 3,569 utterances are from the secondary microphone. The test data is made using

the same types of noise and microphones, and these can be classified into five test-conditions:

clean, noisy, clean with channel distortion, noisy with channel distortion, and all of them which

will be referred to as A, B, C, D and Average respectively.

3.1.2 Baseline systems

The baseline models in our experiments are DNNs, CNNs and TDNNs. DNNs take the 40-

dimensional log Mel filterbank features as input and contain six hidden layers with sigmoid

activation functions and one fully-connected output layer with a softmax activation. Each hid-

den layer has 1024 units. CNNs are composed of two convolution layers and max-pooling

layers, and four affine layers with sigmoid activation function. Each affine layer contains 1024

units and is trained using 40-dimensional log Mel filterbank features with the first and the sec-

ond time derivatives. Both DNNs and CNNs use the same context window of five and batch

size of 256. The best TDNNs in Kaldi use in addtion iVector for speaker adapted systems. They

contain five weight layers with different context specifications (subsampling). Furthermore,

the TDNNs recipe applies data augmentation technique which does speed perturbation of the

training data in order to emulate vocal tract length perturbations and speaking rate perturbation.

All the ASR systems are built up with the Kaldi speech recognition toolkit [19]. The acoustic

models except TDNNs are implemented with PDNN (A Python Deep learning toolkit) [20],

Theano [21], Lasagne [22] and DenseNets source code [11].

3.1.3 Hyperparameters for DenseNets and DenseNets-AD

The architecture of DenseNets in this paper is the same as the best model in the previous work

[12]: the first layer is 3× 3 convolution which is followed by 4 dense blocks. Each block

contains 14 3× 3 convolutional layers. Each dense block except the last one is followed by

a transition which consists of 1× 1 convolution and 2× 2 average pooling. The depth is 65,

the growth rate is 12 and the compression ratio is 0.5. All the convolutional layer use kernel

size 3X3. The architecture of DenseNets-AD is mentioned in figure 3 except the shared layer

is only the first convolutional layer and the following layers are training for senone (phoneme)

recognition task. The gradient reversal coefficient λ is 0.5. The input features for both models

is 40-dimensional log Mel filterbank features with the first and the second time derivatives.

4 Results and Discussion

Figure 5 shows the WERs of all the baseline models and DenseNets on noise corrupted RM test

set at different ranges of SNR. Note that all the models are examined on the noise corrupted test
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Figure 5 – The WERs of TDNN, DenseNets and DenseNets-AD on noisy test sets at different

SNR ranges; DNNs(KNN) means the WER of DNNs on known-noise test set (KNN) and

DNNs(UKN) means the WER of DNNs on unknown-noise test set (UKN).

SNR System KNN UKN

TDNNs 6.93 8.59

0-12 DenseNets 6.30 7.64

DenseNets-AD 6.11 6.97

TDNNs 9.16 9.18

0-8 DenseNets-AD 8.02 8.20

DenseNets-AD 7.84 7.95

TDNNs 10.07 12.21

0-4 DenseNets 9.33 10.48

DenseNets-AD 8.64 9.68

Table 1 – The WERs of TDNN, DenseNets and DenseNets-AD on KNN and UKN test sets.

Where KNN means known-noise test set and UKN means uknow-noise test set.

set at the same range of SNR as the training. For example, the model are trained on the noise

corrupted training set at the SNR range from 0 to 4 and tested on the noise corrupted test set at

the same SNR range. The experimental results in figure 5 show that the WERs of DNNs and

CNNs increase when the SNR decreases. However, TDNNs and DenseNets are relatively stable

when reducing SNR. Overall, DenseNets outperform the baseline models on all the test sets.

Table 1 and Table 2 show the comparison between TDNNs, DenseNets and densely con-

nected convolutional networks with domain adversarial learning (DenseNets-AD) on the noise

corrupted RM and Aurora4. As expected, the WERs of three models increase when the SNR de-

creases. However, DenseNets-AD achieves best performance on both KNN and UKN test sets

at all three SNR ranges. One of the reason is that TDNNs and DenseNets recognize noise as

speech when the noise becomes severe. Table 3 shows one example of TDNNs and DenseNets

failing to distinguish the noise and speech while DenseNets-AD was unaffected.

5 Conclusions

This paper investigated noise robustness of DenseNets and their extension with domain adver-

sarial learning. Our experimental results demonstrated that DenseNets are more robust against

noise than other types of neural networks. Furthermore, we showed that applying domain ad-

versarial learning improved the performance of DenseNets and improved model generalization.
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System A B C D Average

TDNNs 3.47 7.44 10.14 21.91 13.57

DenseNets 3.57 7.29 7.12 16.56 11.53

DenseNets-AD 3.58 6.58 6.76 16.42 10.21

Table 2 – WERs of TDNNs, DenseNets and DenseNets-AD on Aurora4 test set with A, B, C,

D conditions. (A: clean and Sennheiser mic, B: Sennheiser mic and noise added, C: clean and

2nd mic, D: 2nd mic and noise added)

Reference LIST FULL LOCATION DATA FOR TRACK FFF088

TDNNs LIST FULL LOCATION DATA FOR TRACK FFF088 TO EIGHT

DenseNets LIST FULL LOCATION DATA FOR TRACK FFF088 IN THE EIGHT

DenseNets-AD LIST FULL LOCATION DATA FOR TRACK FFF088

Table 3 – The references and the ASR outputs from TDNNs, DenseNets and DenseNets-AD

of an utterance when adding dumpster truck noise at SNR=1

References

[1] HINTON, G., L. DENG, D. YU, G. DAHL, A. MOHAMED, N. JAITLY, A. SENIOR,

V. VANHOUCKE, P. NGUYEN, T. SAINATH, and B. KINGSBURY: Deep neural networks

for acoustic modeling in speech recognition. In IEEE Signal Process. Mag., vol. 29(6),

pp. 82–97. 2012.

[2] SEIDE, F., G. LI, and D. YU: Conversational speech transcription using context-

dependent deep neural networks. In Proc. of the Interspeech. 2011.

[3] DAHL, G. E., D. YU, L. DENG, and A. ACERO: Context-dependent pre-trained deep

neural networks for large-vocabulary speech recognition. IEEE Transactions on audio,

speech, and language processing, 2012.

[4] WAIBEL, A., T. HANAZAWA, G. HINTON, K. SHIKANO, and K. J. LANG: Phoneme

recognition using time-delay neural networks. In Readings in speech recognition. 1990.

[5] ABDEL-HAMID, O., A.-R. MOHAMED, H. JIANG, and G. PENN: Applying convolutional

neural networks concepts to hybrid nn-hmm model for speech recognition. In Proc. of

ICASSP. 2012.

[6] GRAVES, A., A.-R. MOHAMED, and G. HINTON: Speech recognition with deep recurrent

neural networks. In Proc. of the ICASSP. 2013.

[7] LECUN, Y. and Y. BENGIO: Convolutional networks for images, speech, and time series.

In The Handbook of Brain Theory and Neural Networks. 1995.

[8] QIAN, Y. and P. C. WOODLAND: Very deep convolutional neural networks for robust

speech recognition. In Proc. of the IEEE SLT. 2016.

[9] YU, D., W. XIONG, J. DROPPO, A. STOLCKE, G. YE, J. LI, and G. ZWEIG: Deep

convolutional neural networks with layer-wise context expansion and attention. In Proc.

of Interspeech. 2016.

15



[10] XIONG, W., L. WU, F. ALLEVA, J. DROPPO, X. HUANG, and A. STOLCKE: The mi-

crosoft 2017 conversational speech recognition system. In 2018 IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5934–5938. IEEE,

2018.

[11] HUANG, G., Z. LIU, L. VAN DER MAATEN, and K. Q. WEINBERGER: Densely con-

nected convolutional networks. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 2017.

[12] LI, C.-Y. and N. T. VU: Densely connected convolutional networks for speech recogni-

tion. In Proc. of the 13th ITG conference on Speech Communication. 2018.

[13] GANIN, Y., E. USTINOVA, H. AJAKAN, P. GERMAIN, H. LAROCHELLE, F. LAVIO-

LETTE, M. MARCHAND, and V. LEMPITSKY: Domain-adversarial training of neural

networks. The Journal of Machine Learning Research, 2016.

[14] SHINOHARA, Y.: Adversarial multi-task learning of deep neural networks for robust

speech recognition. In Proc. of the Interspeech. 2016.

[15] DENISOV, P., N. T. VU, and M. FERRAS: Unsupervised domain adaptation by adversar-

ial learning for robust speech recognition. In Proc. of the 13th ITG conference on Speech

Communication. 2018.

[16] PRICE, P., W. M. FISHER, J. BERNSTEIN, and D. S. PALLETT: The DARPA 1000-

word resource management database for continuous speech recognition. In Proc. of the

ICASSP. 1988.

[17] FERRAS, M., S. MADIKERI, P. MOTLICEK, S. DEY, and H. BOURLARD: A large-scale

open-source acoustic simulator for speaker recognition. IEEE Signal Processing Letters,

2016.

[18] PARIHAR, N., J. PICONE, D. PEARCE, and H.-G. HIRSCH: Performance analysis of the

aurora large vocabulary baseline system. In Proc. of the 12th European Signal Processing

Conference. 2004.

[19] POVEY, D., A. GHOSHAL, G. BOULIANNE, L. BURGET, O. GLEMBEK, N. GOEL,

M. HANNEMANN, P. MOTLICEK, Y. QIAN, P. SCHWARZ ET AL.: The kaldi speech

recognition toolkit. In Proc. of the IEEE ASRU. 2011.

[20] MIAO, Y.: Kaldi+pdnn: Building dnn-based ASR systems with kaldi and PDNN. In arXiv

e-prints:1401.6984. 2014.

[21] THEANO DEVELOPMENT TEAM: Theano: A Python framework for fast computation of

mathematical expressions. In arXiv e-prints:1605.02688. 2016.

[22] DIELEMAN, S. and ET AL.: Lasagne: First release. 2015.

16


	Introduction
	Methods
	DenseNets Acoustic Models
	Domain Adversarial Learning

	Setup
	Resources
	Data
	Baseline systems
	Hyperparameters for DenseNets and DenseNets-AD


	Results and Discussion
	Conclusions

