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Abstract: Human-machine conversation imposes many challenges where communi-
cations errors are still ultimately unavoidable. It is of great importance to facilitate 
the detection and correction of miscommunication. A robust dialogue system has to 
be able to  detect  miscommunication  and to apply appropriate  recovery and error 
strategies. This is only possible if the system is capable of being aware of any prob-
lematic communication by analyzing and classifying correction dialogue acts.

The speaking style changes, associated with corrections, are characterized by distinc-
tive  prosodic  features.  They  are  mostly  correlated  with  hyperarticulated  speech, 
which can be used as a clue to identify problematic  situations.  In this paper we  
analyzed, categorized and detected distinctive acoustic-prosodic features of correc-
tions on 13 different languages. The statistical analysis showed that there is a signifi-
cant relationship to the language and the type of correction with the features related 
to hyperarticulated speech. In general, speakers raised their voice in the case of a  
request to repeat the last utterance, but they did the opposite in the case of insertions, 
also the speech rate was slower in misrecognition clarifications.

Additionally, we presented the results of classification experiments of corrections  
exploiting acoustic-prosody feature analysis in combination with machine learning. 
The datasets are characterized by a small number of unbalanced classes and a small 
amount of training data per class. Support Vector Machines and Artificial  Neural 
Networks were employed for the multi-class and binary classification. The results 
were analyzed and compared in terms of unweighted accuracy, precision, recall, and 
F1 score.

1 Introduction

In Spoken Dialogue Systems (SDS), Automatic Speech Recognition (ASR) and Natural Lan-
guage Understanding (NLU) are challenging tasks and errors are still ultimately unavoidable.

In reality, there is no ideal speech interface and problems in human-computer conversa-
tion mostly arise in cases of miscommunication between the interacting sides. Therefore, it is 
of great  importance to implement  an appropriate  recovery and error handling strategy,  as 
close as possible to the way humans would react in such situations.

Many research groups are dealing with the topic of prediction, detection, and reduction of 
miscommunication in SDS. In [1], the data-driven approach for detecting instances of mis-
communication is described. Handcrafted rule-based methods are presented in [2], Bayesian 
networks were used in [3], discriminative models in [4], and Long Short-Term Memory Neu-
ral Networks in [5].

The authors in [6] proposed a system which integrates an error correction detection mod-
ule with a modified dialogue strategy.  In the study [7],  a machine-learning approach em-
ployed automatically derived prosodic features, the speech recognition process, experimental 
conditions and the dialogue history to identify user corrections of speech recognition errors. 
An error handling strategy based on dynamically created correction grammars for recognizing 
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correction sentences is described in [8]. Other research studies used different sources of infor-
mation to detect problematic turns, in [9] the authors used information from the language 
model to train an ANN that detected misrecognized words and out-of-scope phrases.

The speaking style changes associated with correction dialogue acts are characterized by 
distinctive prosodic features mostly correlated with hyperarticulated speech, which can be 
used as a clue to identify problematic turns. Using prosodic features for recognizing and clas-
sifying dialogue acts was investigated in [10]. In [11] the duration, pause, and pitch features 
were employed to train a decision tree classifier, which was extended and integrated with rec-
ognizer confidence scores for further improvements in the detection of corrections [12].

The authors in [13] observed that human speech during error resolutions shifts to become 
lengthier and more clearly articulated. A similar study presented in [14] shows that English 
speaker’s utterances of correction and non-correction dialogue acts differ prosodically in ways 
consistent with hyperarticulated speech. They defined it as: “slower and louder speech with 
wider pitch excursion and more internal silence”. Hyperarticulation detection is a challenging 
task for humans and for computers. The speakers have different speaking styles which make it 
challenging to actually see that they are hyperarticulating, therefore classification of a single 
utterance could lead to poor classification performance. The studies [15] and [26] avoid the 
problem by considering an adjacent pair of utterances.

While there are many research studies dealing with cross-linguistic prosodic differences 
[13-14], they are mostly done using a pair of languages and on a limited number of partici-
pants. Moreover, very few like [7], attempt to classify correction acts in more elementary cat-
egories according to the cause (non-recognition, non-understanding, misunderstanding, etc.).

The aim of this paper is to analyze, categorize and detect corrections by their distinctive 
acoustic-prosodic  features.  Additionally,  employing  machine  learning  techniques,  like  
Support Vector Machines (SVMs) and Artificial Neural Networks (ANNs), in combination 
with acoustic-prosody feature analysis, should give the answer to whether a reliable classifica-
tion is possible at all. By our best knowledge, there are no research studies dealing with si-
multaneous  analysis  and  categorization  of  corrections  by  their  characteristic  features  of  
hyperarticulated speech in several languages in parallel.

2 Speech Database

The multilingual speech database was collected by staging a series of Wizard-of-Oz (WOz) 
experiments. In a preparatory phase, an online questionnaire with a total of 870 participants 
was carried out in 13 languages [17]. In the implementation phase, 19 different user scenarios 
and  their  corresponding  dialogues  for  control  of  smart  home  devices  were  designed.  
The scenarios were carefully designed to elicit spontaneous reactions and to trigger recovery 
behavior from the participants in case of miscommunication.

The WOz experiments were carried out for the following languages (abbreviation and 
number  of  participants  in  brackets):  English  (EN:40),  German  (DE:40),  French  (FR:23), 
Spanish (ES:27), Italian (IT:19), Dutch (NL:15), Finnish (FI:7), Norwegian (NO:7), Swedish 
(SE:6), Danish (DA:8), Russian (RU:20), Turkish (TR:20) and Mandarin Chinese (CN:19). 
The dialogues were translated and adapted for all languages while keeping the same meaning 
and the semantic structure whenever possible.

During the session, the wizard manually triggered speech dialogue acts and devices func-
tion to simulate a perfect dialogue system. Miscommunication was simulated by presenting 
speech prompts, which elicited different types of correction responses: Substitutions - reaction 
on wrongly recognized parameters, Insertions - reaction to confirmation of a non-uttered sen-
tence; Deletions - reaction on request to repeat the last utterance.
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The maximum number of eliciting prompts, (around 20% for a session), was estimated 
over the number of required parameters (options, entries) per scenario, including occasional 
system rejections and repetitions. However, not all of the planned correction eliciting prompts 
were played since the actual dialogue flow never reached some states they should be pre-
sented  at.  Approximately  4500  scenarios  for  all  languages  were  fulfilled  yielding  audio 
recordings of 125 hours.

3 Data organization

3.1 Acoustic-prosodic features

We employed 2 different  acoustic-prosodic feature extraction procedures for the selected  
adjacent “statement - correction” dialogue acts pairs.

3.1.1  “VIC” features

Two Praat [18] scripts were used to calculate 16 acoustic-prosodic features:

 “Praat Script Syllable Nuclei v2” [19], was used for automatic detection of syllable nuclei 
in order to estimate the speech rate without the need of manual transcription. Peaks in in-
tensity (dB) that are preceded and followed by dips in intensity are considered to be poten-
tial  syllable nuclei,  while the peaks that are not voiced were discarded. The following 
measures  were used: speech rate (nsyll/speech-duration),  articulation rate  (nsyll/phona-
tion-time) and average syllable duration (phonation-time/nsyll). nsyll is the number of syl-
lables detected in either speech duration or phonation time.

 “ProsodyPro 6beta” [20], was used for systematic analysis of the datasets to generate de-
tailed discrete prosodic measurements suitable for statistical analysis: maximal  f0 (Hz), 
minimal  f0 (Hz), pitch excursion (semitones), averaged  f0 (Hz), averaged intensity (dB) 
and maximum f0 velocity (semitone/s).

3.1.2 “IS09 emotion” features

In addition to the VIC features, we used the feature set designed for emotion recognition: the 
Interspeech  2009  (note  as  IS09)  emotion  challenge  feature  set.  It  contains  384 features  
extracted by the open source toolkit openSMILE [21]. The features are obtained by applying 
12 functionals  to  the  low-level  descriptors:  zero-crossing rate,  root  mean square energy,  
cepstrum  computed  f0,  voicing  probability  computed  by  autocorrelation  function  and  
Mel-Frequency cepstral  coefficients  1-12,  together  with  their  first  order  delta  regression  
coefficients. The influence of emotion on the articulation degree has been studied in [22], 
which makes the IS09 emotion feature suitable to be used for analysis and classification of 
hyper-articulated speech in corrections.

3.2 Delta values 

We selected adjacent pairs of utterances, “statement” and “correction” dialogue acts, for both 
feature dataset, providing in total 3303 observations. The datasets were transformed by sub-
tracting the features of the “statement” acts from the adjacent “corrections” acts, providing 
quantitative  measure  about  how acoustic-prosody features  are changed through both acts. 
Such delta features are considered better suited for analysis and classification, compensating 
different speakers and environmental conditions.
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4 Exploratory statistics

4.1 Correction responses distributions

The total distribution of the elicited corrective responses in all languages is deletions 35.24% 
(1164), insertions 7.78% (257) and substitutions 56.98% (1882). 

Figure 1 – Distribution of types of elicited corrections

In Figure 1 it can be seen that for some languages, there are differences in the count of inser-
tion errors because often the speakers were quite confused providing no answer that could be 
paired with the “statement” act.

Table 1 – Correction response type examples and categorization

Type of Correction Response Statement System Correction

Different, non-matching content (DIFF) 35 minutes 10 minutes correction 35

Full, identical content (FULL) 35 minutes 10 minutes 35 minutes

Mixed, statement contained in correction (MIX) 35 minutes 10 minutes no Vicky, 35 minutes

Partial, correction contained in statement (PART) 35 minutes 10 minutes 35

Table 1 shows an example of categorization of the transcribed corrections into four types of 
responses. The distribution of the response types is shown in Figure 2.

Figure 2 – Distribution of the correction response types
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4.2 Normality Test

Shapiro Wilk normality test of the delta features of both datasets (VIC and IS09), independent 
of language, showed that they are not represented with a normal distribution, as is usually true 
for real data. In the case of VIC features, non-parametric one-sample Wilcoxon test applied to 
all the delta features, independent of language, showed that the minimum f0  is significantly 
higher for the correction turns (p<0.05), higher maximal velocity (p<0.001), longer speech 
duration with unchanged phonation time (p<0.001), lower speech rate (p<0.001), lower artic-
ulation rate (p<0.001) and longer average syllable duration (p<0.001).

Similarly, for the IS09 delta features, it was observed that 202 features have non zero me-
dian values. Most notable, like in VIC features, are: the f0 arithmetic mean (lower, p<0.01), as 
well as, the offset (lower, p<0.001) and the slope (greater, p<0.001) of its linear regression 
model. For RMS energy, the previously stated functionals are not significant predictors, but 
the maximum (p<0.001), minimum (p<0.01), the range (p<0.001) and the standard deviation 
(p<0.001) are significantly larger in the correction turns. The voicing probability also intro-
duced changes in the slope (greater, p<0.001) and the offset (lower, p<0.001) of the contour, 
as well  as,  for ZCR mean (lower,  p<0.001) and its  standard deviation (lower,  p<0.001).  

Kruskal-Wallis rank sum test with language as a factor showed that, in the case of VIC 
features (p<0.001) except for final velocity and average syllable duration, and for IS09 except 
for 32 features, all other delta features belong to non-identical populations. These findings 
confirmed the presence of distinctive features mostly related to slower speech.

4.3 Linear Mixed Models

Better insight about the effects  of the factors could be given by employing Linear Mixed 
Models [23] in R package for statistical computing [24]. The respective features were taken as 
dependent variables, the speaker as a random factor, the native language and the elicited cor-
rections type as fixed factors, and all their possible interactions were included in the model.

The p-values for the fixed effects were calculated by the deviance table analysis (Type II 
Wald chi-square tests). For VIC features, the analysis with factor language revealed the sig-
nificant predictors: maximum f0, mean f0 with (p<0.05), minimum f0, final f0 and maximum 
f0 velocity (p<0.01), the excursion, mean intensity, speech and articulation rate and average 
syllable duration (p<0.001). For the correction type as a factor, all features except final  f0, 
maximum f0 velocity, and the excursion are significant (p<0.001). The statistical analysis fur-
ther revealed significant interactions between language and the correction types (p<0.001) for 
all dependent variables except final velocity (p>0.05) and mean intensity (p<0.05).

Similarly, for the IS09 features the findings could be summarized as: for the language as 
a factor - 98 of the features, predominantly MFCC based functionals, are not significant, for 
the correction types, 88 of the features are not significant, notable among them f0 range (ex-
cursion) and maximum  f0.  For the language and correction  type  interactions,  63 features, 
mostly the MFCC based features, are not significant predictors.

4.4 Summary of the Statistical Analysis

The Linear Mixed Model analysis showed that there is a significant influence of the fixed fac-
tors language and correction types, as well as their interaction at the delta features related to 
hyperarticulated speech. In general, the speakers raised their voice (pitch and intensity) react-
ing on the request to repeat the last utterance (deletions), but they did the opposite in the case 
of  insertions,  mostly  confused  by  the  sudden  and  unexpected  system  confirmation.
The speech rate (including the pauses and hesitations) was slower in misrecognition clarifica-
tions (substitutions).
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5 Classification experiments and results

5.1 Experiments setup

The detection of different types of correction responses with present hyperarticulated speech 
is considered to be a multi-class classification problem. The datasets are characterized by a 
small number of unbalanced classes and a small number of observations per class. In all of the 
experiments, we are using the R package for statistical computing [24].

5.2 Classification methodology

The choice of an appropriate classification approach depends on a number of factors, particu-
larly important are the: 1) tolerance of high dimensionality, 2) capability of exploiting a small  
dataset,  and 3)  handling  of  unbalanced classes.  At first,  we used SVM for  classification, 
which seems well suited when applied on OpenSMILE derived acoustic-prosodic features.  

Also, we assessed the usability of ANN in comparison to the other methods, considering 
the limitations of a rather small  number of observations, inconsistent data set, and a quite 
large feature dimensions.

For all experiments, we used 5-fold Cross Validation (CV) on the train set and measured 
the mean and the standard deviation on the original test set across the folds for unweighted: 
accuracy, precision, recall, and F1 score. To ensure the repeatability of the experiments, we 
kept the same division for the training and test sets, as well as the validation folds. The experi-
ments were repeated also in the case of 2 classes of corrections, deletions, and substitutions. 
The weighted guess classifier accuracy in the 3 class case is 0.455 and for the 2 class is 0.528.

5.2.1 Support Vector Machines

Although originally developed for binary classification, SVMs [25] are widely used also in 
multi-class recognition tasks. In order to achieve acceptable results, the correct choice of ker-
nel parameters is very important. Before the results can be trusted, an extensive search has to 
be conducted on the hyper-parameter ranges to find the most optimal values (Table 2).

To train our SVMs, we took advantage of the R interface to the well-known LIBSVM 
library [26]. The Radial Kernel Function (RBF) was chosen because of the non-linearity na-
ture of the classification problem and of its good general performance. The SVM was tuned 
over a range of the cost - C (10-4 to 101) and the gamma (10-9 to 101) parameters.

Table 2 – Results of classification experiments with the best performing SVM models

dataset n C gamma UAR std precision std recall std F1 std

VIC
3 1 1 0.605 0.024 0.394 0.010 0.437 0.089 0.561 0.025
2 1 1 0.662 0.009 0.592 0.009 0.646 0.015 0.582 0.010

IS09
3 10 0.001 0.687 0.010 0.608 0.020 0.665 0.021 0.627 0.015
2 10 0.001 0.731 0.015 0.720 0.012 0.717 0.013 0.718 0.012

5.2.2 Artificial Neural Networks

Different ANN models were trained through the same feature sets. The R interface to Keras 
[27], the neural network API was employed, with the Tensorflow [28], as the back-end.

A grid search was performed over the hyper-parameter space, to get the most optimal val-
ues for the number of layers and nodes per layer (Table 3). The topology consisted of fully 
connected layers with an equal number of hidden units, leaky ReLU activation [29] function 
and, an L2 kernel regularizer. The output layer has softmax activation and two or three output 
nodes corresponding to the target classes. During training, the categorical cross-entropy was 
used as a loss function, the output of each layer was normalized using batch normalization 
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and passed through a dropout layer. The models were trained using Adagrad [30] stochastic 
optimization which is well suited for tasks that are large in terms of data and/or parameters. 
The learning rate was set to 10-4 and the decay rate to 10-6 with a batch size of 256. The maxi-
mum number of epochs was set to 50 with at least 30 epochs as a condition for early stopping  
when there is no further improvement in the loss function of the validation set.

Table 3 – Results of classification experiments with the best performing ANN models

dataset n layers units UAR std precision std recall std F1 std

VIC
3 3 1100 0.549 0.005 0.551 0.018 0.491 0.007 0.493 0.012
2 3 1100 0.655 0.015 0.654 0.013 0.647 0.013 0.645 0.014

IS09
3 1 2100 0.664 0.014 0.651 0.016 0.600 0.011 0.616 0.012
2 1 1100 0.719 0.007 0.716 0.006 0.708 0.007 0.709 0.007

6 Conclusions

From the results of the statistical analysis, it could be clearly seen that there are distinctive 
acoustic-prosodic features associated with hyperarticulated speech in correction dialogue acts. 
For the classification experiments, we used SVM and ANN for multi-class classification of 
correction types. Many similar studies are dealing with classification of para-linguistic aspects 
in dialogue turns, most of them as binary classification tasks, except in the cases, where an ad-
equate amount of data is available.

The achieved results were analyzed and compared in terms of unweighted accuracy, pre-
cision, recall, and F1 score. The best performing models, achieved better accuracy than the 
baseline weighted guess classifier. The ANN models did perform reasonably well despite the 
relatively small amount of observations and a larger number of features. When the task was 
reformulated as binary classification (deletions and substitutions errors) the ANN model pro-
vided results  which  are comparable  with those  obtained in  similar  tasks  and on different 
speech databases.
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