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Abstract: Human infants have a remarkable ability to learn to speak. To examine the-
ories of some aspects of speech production development we previously developed 
Elija, a computational model of infant speech acquisition. Elija is an agent that can 
influence its environment by generating acoustic output by controlling an articulatory 
synthesizer as well as receiving somatosensory feedback from the environment. We 
first describe the Elija model more formally within the framework of reinforcement 
learning. Then we implement Elija’s vocal apparatus using the more sophisticated 3-
D articulatory Birkholz synthesizer instead of the Maeda model used previously. Here 
we focus on vowel learning and show that, despite the increase in synthesizer com-
plexity, the Elija model agent can still learn to generate vocalic speech sounds unas-
sisted. Subsequently, using a selection process by a caregiver, Elija can refine these 
utterances leading to a set of L1 vowels. We present examples of the discovered vow-
els and show that they compare favorably to standard vowel configurations made 
available with the Birkholz synthesizer. 

1 The Elija Model 

During the acquisition of speech production, infants progress through several identifiable de-
velopmental stages [1]. Elija is a computational model of infant speech acquisition [2]-[4], 
which previously ran in three such stage, as illustrated in Fig. 1. Elija has a motor system that 
drives a simulated vocal tract and a perceptual system that evaluates sensory input. Elija’s motor 
system can generate exploratory articulations and a perceptual system can evaluate the value of 
actions based on their sensory consequences. To generate speech utterance, Elija needs to learn 
appropriate motor patterns, which take the form of values for the vocal tract synthesizer control 
parameters as a function of time.  

The acquisition of speech production in the Elija model begins by means of an unsupervised 
active learning phase, in which Elija discovers how to produce potential speech sounds based 
on vocal self-exploration (Fig. 1.1). This is formulated as an optimization problem, setup to 
find motor patterns that generate salient and diverse sensory output. During this process, the act 
of generating a vocal action results in proprioceptive, tactile and auditory sensory conse-
quences. Internal evaluation of the salience of this output is used to provides an estimate of the 
value of each motor action. This can be used to improve the next production attempt of the same 
utterance using gradient descent. 

This babbling phase is followed by a stage involving reformative interaction with a learned 
caregiver of the target language L1 (Fig. 1.2). The reformulation process arises from the mir-
roring behavior on the part of the caregiver that is observed to natural arise in caregiver-infant 
interaction situations, and this phenomenon appears to be an instinctive behavior. This interac-
tion selectively reinforces Elija’s range of potential speech sounds. This causes Elija to retain 
motor patterns to which the caregivers responded. In addition, it enables Elija to associates his 
vocal actions with the speech sounds he hears in response to them. This results in Elija learning 
correspondences between his speech tokens and those of the caregivers. Importantly, the con-
tent of the correspondences is based on a judgment of sound similarity made by the caregiver 
rather than by Elija. Thus, reformulations allow association of adult linguistic form to infant’s 
utterances, leading to the ability of Elija to imitate the caregiver. 
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In a final word learning phase (Fig. 1.3) we previously showed that caregivers speaking three 
different European languages were able to teach Elija by imitation to pronounce typical first 
words in English, French and German [4].  

 

 

Figure 1 - Separate stages of interactions used in the original Elija model. 1 Elija begins by 
teaching himself to make sounds by exploration of his vocal apparatus. 2 Elija’s repertoire of 
motor patterns is shaped through interaction with a caregiver. This has two effects: 
Reformulations reinforce his motor patterns and associate them with any caregiver responses 3. 
During the word imitation experiments, the caregiver teaching the infant to pronounce first 
words. 

2 Reinforcement learning  

The field of reinforcement learning (RL) is concerned with building agents that interact with 
the environment and can learn to generate appropriate state dependent actions in order to max-
imize cumulative reward, and thereby achieve a goal. Stated formally, at time t when a RL agent 
is in state St, the agent generates an action At. This results in a reward from the environment Rt. 

The action also leads to an observation of the environment Ot which the agent can use to update 
its state. This process is illustrated in Fig. 2. No supervisor is required to drive learning in this 
process, just reward from the environment. Of course, for the agent to operate effectively it is 
important that the agent’s state adequately describes the circumstances the agent in, so it has 
enough information about the environment to appropriately generate future behavior. 

A policy 𝜋 defines how the agent behaves. It is the agent’s probability of choosing a given 
action in a given state. In the case of Q-learning [5], learning Policy p involves learning a state-
action pair function Q(s, a) to specify its behavior, which indicates how good actions are given 
the state. Alternatively, policy gradient methods try to learn the optimal policy p directly [6]. 
Initially the agent will not know policy 𝜋 and consequently will not know which actions to 
generate in a particular state. RL agents can learn to behave optimally by exploring possible 
actions in a given state to find their long-term cumulative reward. After the agent has learned 
the policy 𝜋 , it can then simply follow and exploit it to generate the optimum behavior. 

Thus, reinforcement learning generally operates in two modes. In the first mode, the agent ran-
domly explores its environment, generally only with a small probability, and learns the value 
of its actions by making use of a reward signal relating to the values of the actions. Using the 
information gained form the environment by exploration, in the second mode of operation it 
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can exploit this and generate the optimal action for a given state. Thus, action exploration is 
inherently a part of the RL framework, and the exploration mechanism plays an important part 
in learning. Conversely exploitation is the way to make use of the learned policy to behave 
optimally.  

 

 

Figure 2 – Reinforcement agent interaction with its environment. At time t the agent in is state St, 
generates action At. On the basis of the action it received reward Rt and makes an observation Ot 
from the environment. The agent can then use the observation to update its state. 

 

In simple tasks a lookup table can be used to map between state and value, or indeed to represent 
policy directly. Indeed, in the case of the vowel learning scenario we tackle here, such an ap-
proach is adopted, since a single pattern vector corresponds to the configuration of the vocal 
apparatus for a given vowel. However, is should be noted that as the number of states increases, 
it rapidly becomes intractable to directly model policy in this way. Therefore, in order to avoid 
the curse of dimensionality in real-world RL tasks, it becomes necessary to make use of gener-
alization functions to implement policy. Indeed a recent impressive application of RL was the 
Atari game playing system developed by Minh et al. [7]. The latter application deals with high-
dimensional sensory inputs using deep learning strategies implemented using in multi-layered 
feed forward convolutional networks and learnt to play video games to a better than human 
level of performance 

One issue in RL is that most current methods focus on learn policies that generate discrete 
actions. However, many problems require continuous control. This is particularly the case in 
the control of dynamical systems. Fortunately, recent work indicate that progress in continuous 
control is now also being made by RL methodologies [8]. 

3 RL framework for Elija 

We now formulate the Elija model formally within the framework of RL [6]. We first note that 
the motor pattern representing vocal tract configuration is not discrete, but rather a vector of 
continuous values, with different vectors corresponding to different vowel quantifies. Within 
the policy gradient formulation, to learn policy to attain maximum reward, motor parameters 
can to be modified by gradient descent to optimize utterance reward. We note that this is pre-
cisely what is implemented in the sound discovery phase in the Elija model, in which gradient 
descent is used to optimize the production of simple sounds. Thus, the self-organizing babbling 
stage in Elija is essential a policy gradient method. We note however in its current implemen-
tation in Elija, the gradient is computed within the optimization function on the basis of succes-
sive evaluations of performance of the vocal apparatus. 

306



In the case of learning static sound qualities, such as constant vowels, the credit assignment 
problem is simple. In this case it is clear that the parameters responsible for the static configu-
ration of the articulators resulted in the action and subsequent reward arising from sensory con-
sequences. Such reward can either be generated internally on the basis of salience and diversity, 
or by a response signal from a caregiver.  

However, RL is typically applied to more sophisticated problems that require the generation of 
sequential action. In such cases, the feedback of reward is generally delayed until a final goal 
is reached. This is the scenario for utterance generation that involves movement of the articu-
lators, (i.e. in complex utterance generation made up of different articulator configurations) in 
which their temporal sequence of actions subsequently leads to the generation of dynamic sound 
qualities. In this case the problem needs to be solved as an RL problem that follows a Markov 
Decision Process (MDP) [6]. However, we do not concern ourselves further with these issues 
here, since we only investigate learning vowel qualities.   

4 Birkholz synthesizer 

The major contribution of this current work is to implement Elija’s vocal apparatus using the 
Birkholz synthesizer [9]. This is based on a 3D geometric articulatory model fitted to the anat-
omy and articulation of a male reference speaker based on static and dynamic MRI data [9], 
[10]. The parameters used to describe the geometrical shapes and positions of the articulators 
are mainly based on the work of Mermelstein [11], which were extended to deal with a 3D 
model. The model uses 7 wireframe meshes; one for the palate and posterior larynx wall; one 
for the anterior side of the larynx, pharynx and lower jaw; one each for the upper and lower 
lips; one each for the upper and lower teeth; and one for the tongue. The velum, lip and tongue 
mesh are deformed as required by the articulation.  

The velum has two parameters that define its shape (VS) and the degree of opening of the velo-
pharyngeal port (VO). Lips are defined in terms of protrusion of lip corners (LP) and lip height, 
which is the distance between the upper and lower lip (LD). Lip deformation then follow the 
“law” for lips proposed by Abry et al. [12]. The position of the jaw is determined by JX and 
JA, which determine its protrusion and opening angle. The hyoid is defined by its horizontal 
(HX) and vertical positions (HY). 

The tongue is somewhat more complicated. The mid-sagittal contour of the tongue is described 
by two circular arcs and two rational Bezier curves. The larger tongue body circle is specified 
by radius parameter TCR and its location by TCX and TCY. The smaller circle has a fixed 
radius of 0.4cm and location TTX and TTY. The section of the tongue contour from the hyoid 
to the tongue body circle and the section from the tongue body circle to the tongue tip circle are 
Bezier curves with the additional shape parameters (TRX, TRY) and (TBX, TBY). 

The elevation of the tongue sides is defined at 4 equidistant locations along the mid-sagittal line 
from the by parameters at the root (TS1), central dorsum (TS2), blade (TS3) and tip (TS4). 

The Birkholz synthesizer comes supplied with pre-defined configurations to generate different 
vowels (as well as other sounds). These configurations were obtained from acoustic data from 
a single male subject, and estimated using an analysis-by-synthesis approach [13]. The availa-
bility of such data is very helpful, since such vocal tract configurations can be used as a bench-
mark in the investigation of other approaches to speech sound acquisition, like the one we adopt 
in this current work. 

We note that using the Birkholz synthesizer offers new challenges to the Elija model, since it 
exhibits a larger number of degrees of freedom than the Maeda synthesizer [14] - in our imple-
mentation of the Maeda articulatory synthesizer, ten parameters were used to control the vocal 
apparatus. In addition, its control parameters are more anatomically inspired than those in the 
Maeda model, and are not statistically optimized to independently contribute to the vocal tract 
area function. 
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5 Unsupervised motor pattern discovery  

Here we limit our investigation to vowel discovery. The vocal apparatus used is that of an adult 
male subject because standard vocal tract configurations were available for a range of vowel 
qualities (JD2) so that the results obtained by Elija could be compared with these pre-existing 
vowel qualities.  

As before, Elija first discovers potentially useful articulations in an unsupervised manner by 
finding motor patterns that are solutions to an optimization problem [2]. In this simple case, 
reward relating to the performance of a motor pattern is defined as only a sum of its sensory 
salience, and diversity. The objective function is given by the expression for cost J (negated 
reward) 

𝐽 = −%(𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑒 + 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦)	 
To discover potentially useful articulator configurations, optimization of the objective function 
was carried out using gradient descent to find values of the motor pattern that minimize cost J. 
This was achieved for multiple runs to discover a range of vowels. The motor pattern was al-
ways started from a random initial position and a Quasi-Newton gradient ascent algorithm was 
used to find a solution, as implemented by the Matlab function fmincon. The control parameters 
values were constrained to their valid limits within the synthesizer. 

The diversity term included in the objective function is very important and ensures the for-
mation of a wide range of motor memories. It results in Elija performing active learning and 
encourages exploration of previously untried articulations that generate novel sensory feedback. 
It is computed by comparing the spectral representation of the current pattern’s sensory conse-
quences from those of previously discovered patterns in terms of Euclidian distance. Using this 
acoustic similarity metric, this leads to the discovery of vocalic sounds that are acoustically 
distinct. During this stage operation, no caregiver involvement is required. 

Elija  was implemented in Matlab (Mathworks Inc, Natick MA, USA) running on a Mac Book 
Pro. The vowel experiment discovery was run for 100 utterances and a wide range of vocalic 
sounds were generated, including many that did not constitute L1 in English. Processing took 
about 2 days. Caregiver reinforcement of L1 sounds by a native English speaker was used, in 
which desirable sounds are retained and ignored sounds rejected, and this interaction pruned 
Elija’s vowel production towards L1. 

6 Results 

We compare eight different vowels found by Elija (using optimization and the subsequent care-
giver selection  interaction) with eight pre-set example vowels, for which the target configura-
tions are supplied with the Birkholz synthesizer [13]. Acoustic listening tests by the author 
suggested a good range of vowels were discovered by Elija. Although acoustic comparison is a 
more desirable means of judgement, here we present results as wide band spectrograms. We 
show synthesized output relating to Elija’s discovered vowels and the corresponding example 
vowels, to provide a means of visual comparison. In the presented results, the categorization of 
the vowels was carried out by a simple listening test by the author. Both Elija’s output utter-
ances and the reference utterances were annotated in this way.  

From Fig. 3 it can be seen there is good correspondence between the Elija generated vowels 
and the corresponding reference values. Examination of the sounds by ear also confirmed the 
strong sound similarities.  This demonstrates that although the Birkholz synthesizer is more 
complex and the previously use Maeda synthesizer, gradient descent can lead to the discovery 
of local optimal solutions of the motor patterns that represent good vocalic qualities simply on 
the basis of using a cost function based on acoustic salience and acoustic diversity. It is worth 
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pointing out that it’s quite difficult to find the settings by hand, but a simple optimization is 
able to find these things quite easily. 

7 Discussion 

Previously, Elija’s vocal apparatus was implement using the Maeda articulatory synthesizer 
[14]. The Maeda model represents the vocal tract as a 2-D area function in terms of articulatory 
parameters found using statistical analysis, and this leads to synthesizer control using a rela-
tively small number of independent parameters. The major contribution of this current paper 
has been to implement Elija’s vocal apparatus using the more sophisticated 3-D articulatory 
Birkholz synthesizer [9]. This offered new challenges, since the Birkholz synthesizer exhibits 
a larger number of degrees of freedom than the Maeda synthesizer. In addition, its control pa-
rameters are more anatomically inspired than those in the Maeda model, and are not statistically 
optimized to independently contribute to the vocal tract area function. However, despite the 
increase in synthesizer complexity, we showed that the Elija model can effectively learn to 
generate speech sounds by self-organization which can then be refined by caregiver interaction.  

Other methods have also been suggested for discovering of speech sound production. The active 
learning adopted in the Elija model has much similarity to the idea of intrinsic motivation [15] 
and curiosity [16]. Intrinsic motivation has been proposed as a mechanism to drive development 
in cognitive robotics and vocal development. There has also been recent interested in predictive 
models of speech development [17]. We noticed that there are similarities across all of these 
methods. Indeed, it is also been suggested that predictive models can also play an important 
role in the formulation of solutions based on reinforcement learning. 

As a last note, we mention that formerly Elija learning ran in three distinct experimental stages 
using only simple mechanisms of active learning, reinforcement and association. This was pri-
marily done to ensure all caregivers heard the same sounds and thereby enable cross-caregiver 
behaviors to be analyzed. However, this approach also had the benefit of reduce caregiver in-
teraction time, since the babbling phase was completed before the participant acted as caregiver 
and they didn’t have to sit around while Elija learned novel utterances before interaction became 
possible [4]. In a real infant, self-exploration and caregiver interactions will operate simultane-
ously. By formulating Elija in term of reinforcement learning it is easy incorporate this more 
realistic scenario of infant speech development, since the RL framework can just as well deal 
with internal reward for an utterance or reward arising from caregiver activity such as reformu-
lation. However, we suggest that even with such natural autonomous operation, the former 
identifiable stages of development will still emerge naturally. This is because that behavior is 
driven by the development of the agent, which influence the subsequent behavior, and nature 
of interactions, of the caregiver. 
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Figure 3 – Comparing vowels. The plots showwideband spectrographic analysis of 1 second of 

synthesised speech for 8 vowel qualities. The results compare vowels discovered by the Elija model 
after caregiver selection with comparable predefined values provided for the Birkholz 
synthesiser. 
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