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Abstract: The human voice is capable of fine-grained variation that results in listen-

er attributions of various psychological, social and biological factors. The complexity 

of this process is reflected in the number and richness of terms that are used to de-

scribe human voices. In this paper we argue that any application that attempts a map-

ping of the acoustic voice signal onto voice descriptor labels would benefit from an 

intermediate auditory-phonetic level. As a point of departure we explore the relation-

ships between acoustic parameters and some specific perceptual features derived 

from Vocal Profile Analysis (VPA), a phonetically motivated voice quality analysis 

scheme. 

Perceptual analysis of voice samples from 133 speakers was carried out using VPA 

for three key phonation features (creakiness, whisperiness, harshness). We extracted 

eleven acoustic parameters from the samples and used stepwise linear regression to 

identify acoustic parameters with predictive value. Samples from female speakers 

were used to derive regression equations which were then used to predict VPA ra-

tings of male voices. Results show significant predictors for all three phonation fea-

tures and indicate that predictions for the three phonation types rely mainly on diffe-

rent parameters. If a tolerance of ± 1 scalar degree for the perceptual analysis is ac-

cepted, then classification accuracy lies at or above 90% for all three phonation fea-

tures.  

1 Introduction 

The human voice shows an extraordinary amount of meaningful variability and an individu-

al’s voice quality and timbre typically causes listeners to make a range of affect and personali-

ty attributions (e.g. [1]). The semantic space associated with voice description is immense. 

Laver [2] observed that there are “hundreds of labels” (p. 62) that can be used to describe the 

sound of voices and suggests a semiotic typology for them, capturing the fact that voice terms 

sometimes refer to the auditory impression of a voice (consider terms like thick, whining, 

gravelly, plummy) and sometimes to attributions made towards the speaker or their mood 

based on the sound of a voice (consider terms like young, cold, nervous) or the effect the 

voice may have on the listener (e.g. boring, soothing, frightening).  

In contrast to that, voice classification in fields like clinical voice analysis is often rather 

crude. For example, one of the most widely used systems for scoring disordered voices, the 

GRBAS scale [3], operates with just 5 dimensions. These dimensions benefit from relatively 

high inter-rater reliability [4] and may capture some features that are important for the as-

sessment of disordered voices, but are hardly fine-grained enough to provide a basis for a 

comprehensive description of voice quality.  

An alternative approach to voice quality description is the Vocal Profile Analysis (VPA) 

scheme [5][6]. This scheme aims at a phonetic description of voice quality, independent of 

health status of a voice. It relies on well-established phonetic parameters for the description of 

voice quality, goes beyond phonation features and takes into account physiological constraints 

to sound production at both glottal and supraglottal level. VPA is a perceptual scheme that 
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relies on rating by trained experts. Ratings are based on ordinal seven point scales (zero to 

six) that indicate presence and strength of a certain voice quality feature. Scalar degrees one 

to three are reserved for moderate feature strengths, four to six for extreme (often pathologi-

cal) strengths. As some features are antagonistic, they could also be described as a 15 point 
scale (minus seven to seven).  

In the latest version of VPA, 14 voice quality feature sets are grouped into three domains: 

vocal tract features, overall muscular tension and phonation features. There are eight vocal 

tract feature categories, comprising labial, mandibular, lingual tip/blade, lingual body, 

velopharyngeal, pharyngeal and larynx height settings. There are two muscular tension cate-

gories: vocal tract tension and laryngeal tension. The three phonation feature categories ad-

dress voicing type, laryngeal frication and laryngeal irregularity. The focus of the current pa-

per is on these phonation features. Figure 1 shows the relevant section of the VPA scoring 

form. Detailed descriptions of the VPA approach to phonation type analysis can be found 

elsewhere [6], [7], but it is important to note that for VPA scoring of phonation a neutral base-

line auditory quality is used (sometimes referred to as “modal voice”). This is associated with 

(a) full vocal fold adduction without any audible fricative airflow and (b) regular, periodic 

vocal fold vibration without any audible roughness. Few, if any, speakers have completely 

neutral phonation, so the term “neutral” is not synonymous with “normal”.  

Three non-neutral phonation types, falsetto, whisper and creak, may occur in isolation as 

alternatives to modal voice, in which case they are simply marked as present on the scoring 

form. Whisper refers to fricative glottal airflow with no vocal fold vibration and creak to low 

frequency “pulsed” phonation. Whisperiness and creakiness can also occur in combination 

with voice, as can harshness (associated with irregular vocal fold vibration) and breathiness (a 

lax phonation with high levels of airflow through the glottis). A very wide range of combina-

tions is thus possible (e.g. harsh, whispery voice). In complex phonation types, scalar degree 

judgments are used to indicate perceptual balance. For example, in moderately whispery 

voice, where the fricative component is much less salient than the voice component, voice 

would be ticked and whisperiness would be marked in the 1-3 scalar degree range. If whisper-

iness is more salient than the voicing, a scalar degree score of 4-6 would be given. In general, 

scalar degree 1 means that the setting is just audible, and scalar degree 6 is the maximum de-

gree of that setting that can be produced. Intermittent present of a setting can be marked with 

“i”. The scoring shown in Figure 1 illustrates analysis of a voice that combines voice with 

extreme whisperiness, moderate harshness and moderate intermittent creakiness. Note that 

VPA follows phonetic conventions in differentiating between whisperiness (relatively tense 

phonation with high levels of fricative energy) and breathiness (characterized by very high 

levels of airflow and laryngeal laxness). This contrasts with systems like GRBAS which use 
the term “breathy” to describe both whisperiness and breathiness. 

 Besides voice quality, VPA also allows scores for prosodic features and temporal organ-

ization. These features are not discussed further here, but are important extensions for future 

studies. 

 

 

C. PHONATION FEATURES 

  

 

SETTING 

Present Scalar Degree 

Neutral Non-neutral Moderate Extreme 

1 2 3 4 5 6 

12. Voicing type Voice √   
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Falsetto    

Creak   

i 

 

Creaky   i    

13. Laryngeal  

      frication 

Whisper   

√  

 

Whispery     √   

Breathy         

14. Laryngeal 

       irregularity 

Harsh  √   √      

Tremor         

Figure 1 - VPA scoring form: phonation features section with example scoring (see 

text). 

VPA has been recommended for a variety of applications and good inter-rater agreement can 

be reached with training [8]. Detailed studies of the acoustic correlates of VPA scores are 

relatively rare (see e.g. [9]).  

There have been various successful attempts to recognize and classify phonation types 

(see e.g. [10] for creaky voice) but a holistic acoustic evaluation that assigns VPA-type scores 

for all relevant voice quality parameters to a speaker or voice sample is currently not availa-

ble. An automatic and sufficiently fine-grained phonetic description of voice quality would be 

useful in various contexts, be it voice classification and indexing, voice similarity and confu-

sion judgments and selection of voices in various applications.  

Phonetic voice quality classifications could also allow for more systematicity in the anal-

ysis of links between voice quality and affect, mood or personality attributions. The necessity 

of intermediate levels of representation in this context has been stressed in psychological 

models of emotion perception from speech [11]. In our view, a model that maps voice de-

scriptions to an auditory-phonetic description of voice quality instead of mapping directly to 

the acoustic signal would have several advantages.  

As discussed earlier, voice descriptor labels form a vast and rather unstructured semantic 

field, and this is a particular challenge for commercial activities that rely on voice labelling. 

While many labels will have potential to be mapped against acoustic features, it is unclear a) 

how heterogeneous the various attributions would be across different listener groups (for ex-

ample, what constitutes persuasive or boring might differ between age groups or genders) and 

b) whether attributions remain stable over time or are subject to fluctuations due to changes in 

culture, fashion etc. It would be possible to attempt a direct mapping of the acoustic signal to 

descriptive labels, but inclusion of an intermediate layer of auditory-phonetic analysis such as 

VPA allows for better descriptive stability and transparency in our view. Ideally, the mapping 

of acoustics to the auditory phonetic layer would be invariant, and group differences as well 

as changes over time could be described in altered mappings from the auditory-phonetic layer 
to the voice descriptor labels. 

As a prerequisite for such a model, a stable mapping between acoustic and VPA features 

would need to be established. In this paper we have analysed VPA scores for 133 voices, 

completed by a highly trained expert (the third author). We focused on three phonetic dimen-

sions from the phonation feature section (creakiness, whisperiness, harshness) and eleven 

acoustic parameters (see Section 2).  

We used stepwise linear regression to uncover acoustic parameters with predictive value 

and tested models derived from a corpus of women's voices on a comparable corpus of male 
voices.  
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2 Method  

2.1 Samples 

The voice samples for this study were taken from the KayPENTAX Disordered Voice Data-

base [12]. This database contains data from about 700 speakers (classified as normal or patho-

logical by diagnostic category). We derived a sub-selection of 330 samples that satisfied the 

following criteria: 

• The audio data included a connected speech sample as well as a sustained vowel. 

• English was the native language of the speaker 

• The sample had a valid diagnostic label (including ‘normal’).  

VPA ratings have been completed for 133 samples. We deliberately chose a mixture of 

healthy and pathological samples to achieve a wide spread of VPA scalar degree ratings. 

The DVDB samples consisted of 12 second extracts of readings of the ‘Rainbow Passage’ 

[13], cut from the start of the passage. The 133 samples originated from 80 female speakers 
(60 “normal”, 20 “pathological”) and 53 male speakers (13 “normal”, 40 “pathological”). 

2.2 Acoustic parameters 

Table 1 provides an overview over all acoustic parameters used in the study. Parameters con-

stituted either examples of conventional measures of voice functionality (like mean F0, jitter 

or shimmer) or have shown good performance in studies of acoustic voice quality parameters 
(e.g. CPPS, GNE or H1H2c). 

Table 1 - Acoustic parameters used for multiple stepwise regression 

Parameter Description 

MF0 Mean fundamental frequency calculated over the whole sample, using the 

Praat cross correlation procedure with standard (gender-specific) settings. 

SDF0 Fundamental frequency standard deviation calculated over the whole sample, 

same approach as above. 

ShdB Shimmer (dB), period-to-period amplitude fluctuation, expressed by the 

logarithm (base 10) of he difference of consecutive periods, multiplied by 20. 

The parameter is called Shimmer (local, dB) in Praat (cf. Praat manual [14]). 

Derived from Praat “voice report” functionality. 

RAP Relative average perturbation (RAP) of the fundamental period, a jitter 

measure. See Buder [15], p. 138 for precise formula. (derived from Praat 

“voice report” functionality [14]) 

HNR Harmonics to noise ratio as implemented in Praat and derived from Praat 

“voice report” functionality [14]. 

Slope Slope of the LTA spectrum (suggested as part of the “Acoustic Voice Quality 

Index” (AVQI) parameters, see [16] for details and implementation) 

Tilt Tilt of regression line through the long-term average spectrum (suggested as 

part of the “Acoustic Voice Quality Index” (AVQI) parameters, see [16] for 

details and implementation) 

GNE Glottal noise excitation ratio – an alternative measure of harmonics to noise 

ratio, developed to reduce the influence of jitter and shimmer on HNR 

measures  (see [17] [18]), partly implemented in Praat, with modifications by 

current authors.  

H1H2 Difference between the amplitudes of the 1
st
 and 2

nd
 harmonic amplitude, 
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implementation in Praat by current authors. 

H1H2c Difference between the amplitude of the 1
st
 and 2

nd
 harmonic, corrected for 

vocal tract influence (see [19]), implementation in Praat by current authors. 

CPPS Smoothed Cepstral Peak Prominence (CPPS), originally introduced as a 

dysphonia measure [20] and part of the AVQI parameters, see [16] for details 

and implementation) 

 

2.3 Acoustic and statistical analysis 

Acoustic analysis was performed with Praat 6.0.21 [14] in two processing steps. First, voiced 

segments were extracted following a procedure published by [16]. From the voiced segments, 

the 11 acoustic parameters were extracted with a Praat script with different settings for male 

and female F0 analysis.  

For statistical analysis, stepwise linear regression was performed with SPSS for all 11 in-

dependent acoustic variables. Separate analyses were run for three dependent variables: VPA 

creakiness score, VPA whisperiness score and VPA harshness score. Variables were entered 

in the model if the probability of F was < .05, and removed from the model if probability of F 

was ≥ .10. Regression analyses were run for the female data and resulting regression equa-

tions were used to predict VPA scores for the male data by rounding real numbers to integers.  

3 Results 

3.1 Regression results (women) 

 

Table 2 - Variables selected by stepwise linear regression for three phonation types and 

resulting regression equations 

Dependent varia-

bles 

Independent vari-

ables 

Adjusted R
2
 Regression equation 

Creakiness H1H2c 

MF0 

 

0.23 

0.33 

2.49-0.16 * H1H2c 

(MF0 excluded as a predictor 

due to male/female differences) 

Whisperiness GNE 

H1H2 

Slope 

CPPS 

HNR 

-Slope (removed in 

step 6) 

0.59 

0.65 

0.70 

0.71 

0.73 

0.74 

7.09-4.81*GNE+0.05*H1H2-

0.32*CPPS+0.16*HNR 

Harshness CPPS 0.45 5.1-0.29*CPPS 

 

Table 2 provides the results from the stepwise regression analysis of the female data. Whis-

periness reached the highest amount of explained variation (74%), and GNE is the strongest 

predictor, which on its own explains almost 60% of the variation. This confirms the role of 

GNE as a good predictor of (perceived) added noise in the voice signal. For harshness, a sin-

gle predictor was selected (CPPS), which again confirmed the conventional interpretation of 

this parameter, although it was originally suggested as a ‘breathiness’ indicator. Explained 

variation was moderate for this VPA parameter (45%). Creakiness resulted in the lowest ex-

plained variation (33%) but the strongest predictor was a parameter that has been linked to 

creakiness before [21].  
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3.2 Prediction of male VPA scores from female regression analysis 

We applied the regression equations reported above to the male data and predicted the VPA 

scalar degrees for the three phonation features. Real numbers resulting from the equation were 

rounded to the nearest integer. Table 3 provides the frequencies for hits and misses in percent. 

Table 3 - hits and misses for male data VPA score predictions in percent 

Feature hits miss ± 1 scalar 

degree 

miss ± 2 scalar 

degrees 

miss ± 3 scalar 

degree 

Creakiness 21% 53% 21% 6% 

Whisperiness 34% 43% 23% 0% 

Harshness 36% 51% 13% 0% 

 

Table 4 - True positives (TP), false negatives (FN), false positives (FP), true negatives 

(TN) and derived classifier metrics and their weighted averages (wA). 

Creakiness 

Rating TP FN FP TN  Precision Recall/ 

Sensitivity 

Specificity Accuracy 

0 0 0 7 46 0.00 0.00 0.87 0.87 

1 12 2 2 37 0.86 0.86 0.95 0.92 

2 12 8 0 33 1.00 0.60 1.00 0.85 

3 9 4 1 39 0.90 0.69 0.98 0.91 

4 6 0 2 45 0.75 1.00 0.96 0.96 

5 0 0 2 51 0.00 0.00 0.96 0.96 

Sum 39 14 14 251 wA 0.91 0.74 0.98 0.90 

 

Whisperiness 

Rating TP FN FP TN  Precision Recall/ 

Sensitivity 

Specificity Accuracy 

0 1 3 4 45  0.20 0.25 0.92 0.87 

1 7 0 4 42  0.64 1.00 0.91 0.92 

2 4 4 4 41  0.50 0.50 0.91 0.85 

3 18 4 0 31  1.00 0.82 1.00 0.92 

4 9 1 0 43  1.00 0.90 1.00 0.98 

5 1 0 0 52  1.00 1.00 1.00 1.00 

6 1 0 0 52  1.00 1.00 1.00 1.00 

Sum 41 12 12 306 wA 0.82 0.77 0.97 0.92 

 

Harshness 

Rating TP FN FP TN  Precision Recall/ 

Sensitivity 

Specificity Accuracy 

0 4 3 0 46  1.00 0.57 1.00 0.94 

1 16 1 1 35  0.94 0.94 0.97 0.96 

2 10 0 5 38  0.67 1.00 0.88 0.91 

3 7 1 1 44  0.88 0.88 0.98 0.96 

4 3 2 0 48  1.00 0.60 1.00 0.96 

5 6 0 0 47  1.00 1.00 1.00 1.00 

Sum 46 7 7 258 wA 0.90 0.87 0.97 0.95 
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Table 3 shows that, while the frequency of absolute hits was not satisfactory, the majority of 

errors tended to be small. If variations of  ± 1 scalar degree were tolerated, then hit rates for 
creakiness increase to 74%, for whisperiness 77% and for harshness 87%.  

Table 4 provides detailed results for prediction of ratings for the male data using the 

model estimated from the female data where variations of ± 1 scalar degree were tolerated. 

Precision, recall, specificity and accuracy were calculated individually for each class. The 

average values were then calculated by weighted aggregation of the individual scores accord-

ing to the prevalence of the corresponding label in the test data. 

4 Discussion 

While the relative small database of this study limits generalisability, results are generally 

promising. In all three cases, predictor variables achieve moderate to high levels of explained 

variance and confirm previous findings regarding the explanatory value of these parameters. It 

is also worth mentioning that predictions for whisperiness and harshness, while not complete-

ly independent, mainly rely on different parameters. GNE was not chosen as a predictor for 

harshness, and while CPPS was chosen as a predictor for both whisperiness and harshness, its 

contribution to whisperiness was quite small and it could probably be dropped from the model 
for whisperiness without major losses in accuracy.  

Creakiness regression relied mainly on differences between the first and second harmonic 

and mean F0, which corresponds with previous accounts, as mentioned above. Creakiness will 

probably have the most complex acoustic signature of the three phonation features discussed 

here, and its overall impression might rely more on intra-sample variability than the other two 

features. A single mean calculated over a speech sample might not provide enough infor-

mation for the assessment of perceived creakiness in the sample, and future approaches 

should take further measures (e.g. the standard deviation of the H1H2c measure or measures 

suggested in [10] into account). The situation is complicated by the fact that creakiness is of-

ten intermittent, occurring more frequently in certain prosodic contexts and towards the end of 

breath groups. For these reasons, a prosodic approach that weighs creakiness differently ac-

cording to prosodic constituents (like prominent syllables or phrase edges) might add further 
nuance to the model.   

While linear regression is a relatively simple model for prediction and classification and 

its application to ordinal response variables is not without problems, the prediction results for 

the male data can serve as a benchmark for more sophisticated approaches. If deviations of ± 

1 scalar degree are tolerated, then classification accuracy lies at or above 90% for all three 

phonation features. Given that deviations of ± 1 scalar degree have been accepted in evalua-
tions of reliability for a number of VPA studies [6], this might be acceptable.    

The three features studied here are obviously only a small part of the voice quality set-

tings that can be described with VPA, and future studies will look into the acoustic correlates 

of other sections of the VPA scheme and how VPA and acoustic features can be mapped onto 
voice descriptor labels. 
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