
A TOOLKIT FOR NESTED MULTI-TURN SPEECH DIALOG IN

AUTOMOTIVE ENVIRONMENTS

Timo Sowa, Soyuj Kumar Sahoo

Elektrobit Automotive GmbH

timo.sowa@elektrobit.com

Abstract: Current in-car dialog systems foster concise interactions for navigation,

media, or phone control very well. Yet, they are usually not employed for complex

multi-turn dialogs involving nested topics. However, this type of conversation is

getting more important when moving toward more natural, assistant-like voice in-

terfaces in the car. We present a dialog modeling and execution approach to account

for this. It is based on the idea of a dialog stack that keeps track of the active dialog

topics. The stack influences the execution of dialog turns while executed dialog

turns modify the stack. The approach supports dialog decomposition into reusable

parts and topic interruption/resumption for user-initiative and mixed-initiative di-

alogs. We implemented our approach for an existing GUI and dialog modeling

tool.

1 Introduction

Voice user interfaces are nowadays very common in cars. For almost any car model there is a

variant of the infotainment system that includes voice control. According to a German survey,

about 25% of the drivers of “voice-enabled cars” are using this feature. Typical use cases for

in-car voice interaction include navigation, radio/media control, and telephony (though recent

infotainment systems cover many more).

User utterances are mapped to (parametrized) functions of the infotainment system dur-

ing speech processing. The processing chain normally consist of speech recognition, semantic

interpretation (extracting the function and its parameters from the utterance), and dialog man-

agement. The latter coordinates speech recognition and output. The infotainment functions

(also called intents) are usually triggered by voice commands that contain the required parame-

ters (also called slots). For instance, a phone command like “call Peter at work” may contain a

slot for the callee (Peter) and a slot for the contact type (at work). For typical use cases, it’s often

possible to trigger a function with a so-called one-shot command which specifies all the required

slot values in a single utterance. The more slots a certain function requires, however, the more

difficult it gets to express all of them in a one-shot command. Hence, the system should ideally

be able to cope with different interaction styles including one-shot and prolonged multi-turn

dialogs. When a dialog stretches over several turns, it should be interruptible and resumable to

increase the efficiency of the interaction (avoiding to start over after the interruption). Such in-

terruptions (or deviations from the dialog topic) may come from the user him/herself (e.g. when

asking for the weather in the middle of a more complex interaction), or from the system which

may take the initiative and inform the driver about important traffic hazards or dangers on the

route while he/she is engaged in voice interaction.

Dialog design tools should provide an appropriate support for modeling such features. Ef-

ficient dialog modeling also means not to reinvent the wheel. In particular, when designing a

voice interface for a multitude of different functions, there may be dialog patterns that can be

reused.

231

Fueled by the recent success of voice assistants, users’ expectations toward in-car voice

interfaces may rise. Voice interaction needs to be more natural and needs to cover more complex

functions, also beyond the immediate car-related use cases. Dialog modeling and execution

approaches as well as the tooling need to take this into account.

We present a dialog specification and execution approach that aims to support these as-

pects. It is an extension of an existing product for in-car HMIs (human-machine interfaces)

including voice user interfaces. In the following section we will briefly describe the dialog

management/modeling approach we follow in our existing product. Section 3 describes our

extended approach focusing on the mechanics of dialog stack management. Notes on the pro-

totype system and concluding remarks can be found in the final sections.

2 State-based dialog design and management

The general HMI modeling approach we follow in our product1 is based on Harel state graphs

[1]. An HMI may consist of multiple state graphs which are processed in parallel by state

machines. The synchronization between different state machines is achieved with events that

can be received and processed in all state machines. Graphic/haptic and speech interaction are

modeled with separate graphs. The state graph for speech consists of talk states that define

voice interaction and of transitions between the states. Talk states in turn contain elements

that constitute the dialog (also called spidgets, “speech widgets”). Prompt elements specify

system utterances, while command elements define the inventory of recognizable utterances

(via grammars or example sentences) and the behavior upon recognition [2].

Each dialog element is configured with a set of properties. Properties are named local

variables that can be set by the modeler and may change during run time. A command spidget

for speech input, for instance, has properties to define the utterances to recognize. Further

properties define what to do when a command was recognized. A typical reaction would be to

fire an event causing a transition to another talk state. When a talk state is entered at runtime,

the standard system behavior is to play the prompts defined in that state, followed by speech

recognition as defined by the commands. With this standard approach, the dialog’s structure

is mainly defined by the state graph. This modeling method is easily comprehensible, but has

limitations when it comes to complex dialogs with an adaptive dialog flow as described in the

introduction. For this reason we extended our approach as described in the following sections.

3 Extended dialog modeling approach

3.1 Ontology, intents, and entities

We introduced an ontology to be able to express structured information both regarding the

intents and the data they’re dealing with. It is a resource coupled with an HMI model. With the

ontology a modeler can freely define classes of objects using inheritance and part-of relations.

One built-in class is called ■♥t❡♥t and serves as a superclass for model-specific dialog topics

or functions. Each class derived from ■♥t❡♥t typically relates to a function a user wants the

system to execute. Intent classes have members, which can be regarded as the parameters of the

function an intent represents. Members are themselves defined in the ontology as derivatives

from the built-in ❊♥t✐t② class. The modeler may assign properties of dialog elements (prompts,

commands) to intent types. This is used to control the activation of dialog elements and to define

their effect (see below).

1EB GUIDE + Speech Extension.

232

Object

Intent Entity

parkTime: Time
parkPlace: POI

ReserveParking

name: string

POI

to: Location
from: Location

ComputeRoute Location

latitude: float
longitude: float

parkDuration: Timespan

...

Time

...

Timespan

Figure 1 – A simple ontology defining intents and entities. Boxes depict classes and show their mem-

bers, arrows show is-a relations.

3.2 Combined state-based and information state update approach

We further extended our approach by combining it with modeling capabilities more aligned to

the information state (IS) update approach [3]. We keep the state graph, but modify the meaning

of a (talk) state to just define the set of available dialog elements. The elements may be active

or inactive depending on the information state. The modeler can define the conditions for ac-

tivation for each dialog element (prompts and commands) independently. Additionally, he/she

defines how to alter the information state when the respective dialog elements get executed.

The processing cycle of a talk state is illustrated in Figure 2. A talk state is entered due

to an event, and the activations for all prompts in the set are evaluated. The system executes

(plays) the active prompts. Afterwards, the information state is altered according to the updated

properties for the IS of the active prompts. The updated information state is then applied to eval-

uate the activation for all commands in the set. Speech recognition is initiated if there is at least

one active command. In case an active command has been recognized, the information state

gets updated according to its update properties. This change may activate other prompts. The

processing cycle continues until there is no more active dialog element. That way, a complex

dialog may unfold within a single state of the HMI model. Making dialog elements depend on

the IS, however, is optional. If the modeler does not use the feature, the behavior falls back to

the pure state-graph-driven approach described above where simply all prompts and commands

are activated. By embedding the IS-based execution of dialog elements in a state, we still allow

the limited, but easy and straightforward state-based modeling approach.

3.3 Call back questions and confirmations

One requirement mentioned in the introduction was to support flexible, multi-turn dialogs.

While they can be modeled with the state-based approach, state graphs tend to get compli-

cated when trying to insert some flexibility. For instance, if some slots are filled with an initial

event

Talk state

update ISrecognize

update IS
Prompt

set

Command
set

repeat
until

inactive

activation
evaluate prompt

prompts
play active

activation
evaluate command

Figure 2 – Processing cycle when the state machine enters a talk state.

233

command, and the system shall flexibly ask for missing slot values and confirm them. This kind

of dialog strategy is often called slot-filling or frame-based approach. It requires the system to

keep track of the currently active intent, the values of its members, and whether the values have

been confirmed.

In our framework it can be achieved by setting dedicated properties. The property ♣r❡■♥t❡♥t

is available for any dialog element. It is set to an intent class defined in the ontology. When

present, the respective dialog element is only considered for activation if the value of ♣r❡■♥t❡♥t

matches to the current intent (or topic under discussion). Additionally, there is the ♣♦st■♥t❡♥t

property which sets the current intent after the dialog element has been executed. To enable slot-

dependent activation the property ♠❡♠❜❡r can be used. All members defined for ♣r❡■♥t❡♥t are

selectable as value. For specifying call back questions and activating subsequent commands,

the binary-valued ✉♥❞❡❢✐♥❡❞ property can be used. If set to true, it is required that the slot

value ♠❡♠❜❡r of the intent ♣r❡■♥t❡♥t is undefined (thus, has no value yet). Similarly, setting

the ❝♦♥❢✐r♠ property for prompts requires that the slot was not yet (implicitly) confirmed in

order to activate the prompt.

The following example illustrates how to use these properties to model a slot-filling dialog.

Assume that these dialog elements are defined in a talk state:

1. command to initiate a parking reservation request

♣r❡■♥t❡♥t ❂ ⊥✱ ♣♦st■♥t❡♥t ❂ ❘❡s❡r✈❡P❛r❦✐♥❣

2. prompt to request the parking place (POI) from the user

♣r❡■♥t❡♥t ❂ ❘❡s❡r✈❡P❛r❦✐♥❣

♠❡♠❜❡r ❂ ♣❛r❦P❧❛❝❡✱ ✉♥❞❡❢✐♥❡❞ ❂ tr✉❡

3. command to recognize a parking place (POI)

♣r❡■♥t❡♥t ❂ ❘❡s❡r✈❡P❛r❦✐♥❣

♠❡♠❜❡r ❂ ♣❛r❦P❧❛❝❡✱ ✉♥❞❡❢✐♥❡❞ ❂ tr✉❡

4. prompt as a confirmation for the POI to park at

♣r❡■♥t❡♥t ❂ ❘❡s❡r✈❡P❛r❦✐♥❣

♠❡♠❜❡r ❂ ♣❛r❦P❧❛❝❡✱ ❝♦♥❢✐r♠ ❂ tr✉❡

When entering the talk, only the command (1) is activated. The initial user utterance could

be “find a parking lot” which is recognized by (1) and causes the current intent to be set to

❘❡s❡r✈❡P❛r❦✐♥❣. In the next processing cycle prompt (2) is played (e.g. “Where do you want

to park?”) and command (3) is activated for recognition since the intents match and the condi-

tions for the member ♣❛r❦P❧❛❝❡ are fulfilled. The user may say “Close to Shedd Aquarium”

which is stored as value for the currently active intent and activates prompt (4) which may con-

firm the slot by saying “Ok. Shedd Aquarium”. Further dialog elements could be added for the

other members of the parking reservation intent.

3.4 Dialog stack

Call back questions and confirmations are basic ingredients for multi-turn capable dialog mod-

els. In a similar way, these approaches can be found in the dialog specifications for popu-

lar voice assistants such as Amazon Alexa and Google Assistant. For nested dialogs, how-

ever, we extended our approach by employing a dialog stack model inspired by [4]. The

elements of the stack are structures describing all currently active intents. Each element is

a triple (i,m,r) where i is an instance of an intent class as defined in the ontology, m =

234

m = {(time,⊥, false)}

r = {(time, parkT ime)}

i = EnterTime

m = {(city, Chicago, false), (time,⊥, false)}

r = {}

i = WeatherInfo

m = {(parkP lace, SheddAquarium, true),

(parkT ime,⊥, false),

i = ReserveParking

(parkDuration,⊥, false)}
r = {}

User: “Please reserve a parking lot close to

the Shedd Aquarium.”

System: “Shedd Aquarium, ok. At what

time?”

User: “How is the weather in Chicago?”

Figure 3 – Status of the dialog stack after the discourse shown right.

(member1,value1,con f irmed1), . . . ,(membern,valuen,con f irmedn) defines the current mem-

ber values for the intent instance i together with a flag whether the value was already confirmed

or not. r = (memberi1,member j1), . . . ,(memberin,member jn) represents the member values to

propagate to the next-lower level with an intent j when i gets popped from the stack. This can

be employed to model sub-dialogs (see below).

Initially the dialog stack is empty. Pushing an element on the empty stack means that a new

discourse segment with a dedicated purpose begun. This purpose is represented by the corre-

sponding intent i. Pushing an element on the non-empty stack starts a new, embedded discourse

segment. Popping an element from the stack means that the discourse segment connected to i is

finished. This may happen either because all required members of i have values and the intent

can thus be executed, or because the user explicitly canceled the dialog.

Consider the example shown in Figure 3. The left side of the image is a snapshot of the

stack’s status after the dialog turns on the right side were executed. The user starts with a parking

lot reservation request. This causes an initial instance of the P❛r❦✐♥❣❘❡s❡r✈❛t✐♦♥ intent to

be pushed on the stack which sets the current topic of discourse. Of the three members defined

for the intent (place, time, and duration) the user only specifies the place (“Shedd Aquarium”).

Since there is no stack element underneath, r remains empty. Due to the updated stack, first a

confirmation prompt for the POI mentioned in the first utterance gets active, followed by a call

back prompt, which asks for the time of the reservation. The modeler may have chosen to handle

time requests in a dedicated sub-dialog and introduced an intent ❊♥t❡r❚✐♠❡ for that purpose.

Thus, an instance of that intent class is pushed on the stack defining a new sub-topic. Its member

value is not yet set in m. Note that the return values r link the member values to those of the

underlying ❘❡s❡r✈❡P❛r❦✐♥❣ intent. The user now chooses not to respond to the question, but to

interrupt the dialog with a weather request. The system pushes the corresponding ❲❡❛t❤❡r■♥❢♦

intent with the member value “Chicago” (taken from the utterance) on the stack. The stack

snapshot reflects the status of the dialog. The weather topic is currently in focus, but there is

still the reservation with its time-related sub-dialog on the stack which can be returned to once

the weather intent is finished.

The dialog stack model now plays the role of the information state that influences what

dialog elements to activate next (cf. Figure 2). In order to control the activation of dialog

elements, the property ♣r❡■♥t❡♥t is evaluated again (but now in a slightly different way than

before): A dialog element is considered for activation

• if the ♣r❡■♥t❡♥t property is not set (has no value), or

• if the ♣r❡■♥t❡♥t property value is equal to the intent i of the topmost stack element.

Not defining ♣r❡■♥t❡♥t thus means to always activate a dialog element. Note that this

235

condition may not be sufficient, because other properties may put further constraints on the

activation of a dialog element. The effect of dialog element execution on the stack depends on

the properties ♣♦st■♥t❡♥t, and the binary-valued ♣✉s❤ and pop properties. Upon execution of

a dialog element

• if the ♣✉s❤ property value is true, an instance of ♣♦st■♥t❡♥t is put on the stack,

• the member values of the topmost stack element are updated according to the slots values

of the dialog element, and

• if the ♣♦♣ property value is true, the topmost element is removed from the stack.

To achieve the dialog behavior of our example (cf. Figure 3), the modeler could add the

dialog elements listed below to the talk state. Note that the specification of the recognizable text

for commands and the output text for prompts is omitted in these examples. It is possible to use

SRGS grammars as well as collections of example sentences for commands. Both commands

and prompts can have slots that correspond to the members of the intents.

1. command to initiate a parking reservation request

♣r❡■♥t❡♥t ❂ ⊥✱ ♣♦st■♥t❡♥t ❂ ❘❡s❡r✈❡P❛r❦✐♥❣✱ ♣✉s❤ ❂ tr✉❡

2. prompt as a confirmation for the POI to park at

♣r❡■♥t❡♥t ❂ ❘❡s❡r✈❡P❛r❦✐♥❣✱ ♣♦st■♥t❡♥t ❂ ⊥✱ ♣✉s❤ ❂ ❢❛❧s❡✱

♠❡♠❜❡r ❂ ♣❛r❦P❧❛❝❡✱ ❝♦♥❢✐r♠ ❂ tr✉❡

3. prompt to query the parking time

♣r❡■♥t❡♥t ❂ ❘❡s❡r✈❡P❛r❦✐♥❣✱ ♣♦st■♥t❡♥t ❂ ❊♥t❡r❚✐♠❡✱ ♣✉s❤ ❂ tr✉❡✱

♠❡♠❜❡r ❂ ♣❛r❦❚✐♠❡✱ ✉♥❞❡❢✐♥❡❞ ❂ tr✉❡✱ r❡t✉r♥❱❛❧ ❂ ④t✐♠❡✱ ♣❛r❦❚✐♠❡⑥

4. command to initially recognize a time-related expression

♣r❡■♥t❡♥t ❂ ❊♥t❡r❚✐♠❡✱ ♣♦st■♥t❡♥t ❂ ⊥✱ ♣✉s❤ ❂ ❢❛❧s❡

5. command to initiate a weather request

♣r❡■♥t❡♥t ❂ ⊥✱ ♣♦st■♥t❡♥t ❂ ❲❡❛t❤❡r■♥❢♦✱ ♣✉s❤ ❂ tr✉❡

6. prompts as an information about the resumption of the parking request

♣r❡■♥t❡♥t ❂ ❘❡s❡r✈❡P❛r❦✐♥❣✱ ♣♦st■♥t❡♥t ❂ ⊥✱ ♣✉s❤ ❂ ❢❛❧s❡✱

r❡s✉♠❡ ❂ tr✉❡

7. prompt to query the parking duration

♣r❡■♥t❡♥t ❂ ❘❡s❡r✈❡P❛r❦✐♥❣✱ ♣♦st■♥t❡♥t ❂ ❊♥t❡r❉✉r❛t✐♦♥✱ ♣✉s❤ ❂ tr✉❡✱

♠❡♠❜❡r ❂ ♣❛r❦❉✉r❛t✐♦♥✱ ✉♥❞❡❢✐♥❡❞ ❂ tr✉❡✱

r❡t✉r♥❱❛❧ ❂ ④❞✉r❛t✐♦♥✱ ♣❛r❦❉✉r❛t✐♦♥⑥

8. . . .

In our example, commands (1) and (5) get activated at the beginning, because they don’t

have any specific preconditions. (1) gets recognized, and ❘❡s❡r✈❡P❛r❦✐♥❣ is pushed on the

stack. Then the pre-conditions for the confirmation prompt (2) match and it is played, imme-

diately followed by the call back prompt (3) for the parking time. This pushes ❊♥t❡r❚✐♠❡ on

the stack, and activates the command for time recognition (4) in addition to command (5) for

the weather. Since the user issues a weather request, (5) gets recognized, and ❲❡❛t❤❡r■♥❢♦ is

pushed, finally leading to the situation depicted in Figure 3.

236

m = {(duration,⊥, false)}

r = {(duration, parkDuration)}

i = EnterDuration

m = {(parkP lace, SheddAquarium, true),

(parkT ime, 4o′clock, false),

i = ReserveParking

(parkDuration,⊥, false)}
r = {}

System: “Currently it is warm and sunny in

Chicago. Let’s continue with your parking

reservation. At what time?”

User: “Four o’clock.”

System: “How long would you like to park?”

Figure 4 – Status of the dialog stack after discourse shown right.

In addition to this explicit effect of dialog elements on the stack, an automatism ensures

that the dialog does not get stuck: When no prompt can be activated, the topmost element of the

dialog stack is removed, and the activation of prompts is re-evaluated. This cycle continues until

an applicable prompt has been found or the stack is empty. In the latter case the dialog comes

to a stop, in the former case it continues by resuming a topic which has been interrupted before.

Intuitively this behavior removes a topic (intent) when there is nothing more to say about it. It

is in this auto-pop stage when the return values get evaluated. To further illustrate the behavior,

consider a possible continuation of the example as depicted in Figure 4. Assuming that there is

some business logic to handle the weather request and retrieve the answer (not covered here), a

response is generated. There is nothing more to talk about regarding the weather intent, so the

element automatically gets removed from the stack, putting ❊♥t❡r❚✐♠❡ in focus again, but it is

also removed since no prompts are defined for it, going back to the ❘❡s❡r✈❡P❛r❦✐♥❣ intent. At

that point prompt (6) is played which has a r❡s✉♠❡ pre-condition which activates it in case the

stack was popped and the topmost intent matches the ♣r❡■♥t❡♥t property. Then prompt (3) is

activated again leading to ❊♥t❡r❚✐♠❡ being pushed again which in turn activates (4). This time

the user says a time and (4) gets recognized. The stack is popped and the time slot is propagated

to the lower level, making prompt (3) inactive. However, now prompt (7) is activated asking for

the duration and pushes an instance of the ❊♥t❡r❉✉r❛t✐♦♥ intent on the stack, leading to the

depicted situation.

Note that the same dialog behavior can be achieved without introducing dedicated intents

for ❊♥t❡r❚✐♠❡ and ❊♥t❡r❉✉r❛t✐♦♥. The model could just stick to the parking intent using call

back prompts in case time and duration were missing. However, by dividing a more complex

dialog into dedicated sub-dialogs, the latter can be re-used as building blocks for other intents.

For instance, a sub-dialog for entering the time in our example could have clarification questions

in case it’s unclear weather am or pm is meant. These would not have to be re-modeled for other

intents that also require time entry.

3.5 Mixed initiative

Our approach can be naturally extended to the mixed initiative case when an ongoing voice

interaction gets interrupted by a system-initiated dialog and is afterwards resumed. In this case

pushing an intent/topic on the stack is not a consequence of a command getting recognized as it

was in the examples before. Instead, some external condition (e.g. some warning signal from the

navigation sub-system) occurs that gives rise to a new element being pushed on the stack (e.g.

❘♦✉t❡❯♣❞❛t❡). This is achieved by offering an interface to the dialog stack that is accessible

from the outside, independently of the dialog elements. We introduced a script function for this

purpose, which can be called by the modeler.2 The modeler then needs to create appropriate

dialog elements (prompts and subsequently used commands) to define the interrupting dialog.

2Note that EB GUIDE has a built-in scripting language the modeler has access to.

237

The resumption to the original interaction follows the same rules as user-initiated interruptions

discussed above.

4 Prototype system

The modeling concepts described previously were implemented for our product EB GUIDE

Speech Extension (SE).3 It consists of definitions for the new properties of dialog elements

used in the SE. A run-time module for maintaining the dialog stack has been added together

with the business logic for stack queries and manipulations. A use case similar to the interaction

examples presented in this paper has been modeled with our extension and can be demonstrated.

5 Conclusion

In this paper we suggested a dialog modeling and execution approach capable of multi-turn di-

alogs with mixed initiative and nested topics. The core device of the applied dialog theory is a

dialog stack. The approach supports decomposing complex dialogs into smaller, re-usable parts

and thus aims at reducing the modeling effort across multiple use cases. The approach was em-

bedded in an existing dialog modeling tool which is largely based on the state graph paradigm.

The solution thus combines the state-based dialog modeling for simple voice interactions with

ideas more inclined to the information state update approach to dialog management for more

complex interactions. Strengths of both approaches can thus be combined in one tool.

References

[1] HAREL, D.: Statecharts: A visual formalism for complex systems. Science of Computer

Programming, 8(3), pp. 231–274, 1987.

[2] MASSONIE, D., C. HACKER, and T. SOWA: Modeling graphical and speech user inter-

faces with widgets and spidgets. In Proc. of the 11th ITG Symposium on Speech Communi-

cation. VDE, 2014.

[3] TRAUM, D. and S. LARSSON: The information state update approach to dialogue man-

agement. In J. VAN KUPPEVELT and R. SMITH (eds.), Current and new Directions in

Discourse and Dialogue, pp. 325–353. 2003.

[4] GROSZ, B. and C. SIDNER: Attention, intentions, and the structure of discourse. Compu-

tational Lingustics, 12(3), pp. 175–204, 1986.

3https://www.elektrobit.com/ebguide/

238

	Introduction
	State-based dialog design and management
	Extended dialog modeling approach
	Ontology, intents, and entities
	Combined state-based and information state update approach
	Call back questions and confirmations
	Dialog stack
	Mixed initiative

	Prototype system
	Conclusion

