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Abstract: The article describes our first analysis and development steps to extent

an unmanned aerial vehicle (UAV, drone) with an intuitive user interface during

agriculture operations. The targeted sound and speech signal processing, e.g. to

enable command recognition, is elaborate due to rotor and other noises of a flying

drone. The signal processing has to deal with different sound sources, such as noise

which disturbs the analysis or useful signals like speech commands and acousti-

cal events that characterize environmental objects. Currently, typical commercial

drones are not equipped with microphones. Therefore, we test basic scenarios and

measurement steps to directly record acoustic signals including noise at a flying

drone with a simple Lavelier microphone in different recording positions. In the

resulting audio database, we analyze the according effects of microphone position,

flight maneuver and environment in the spectrogram and power-density spectrum.

Expectedly, the blade passing frequency (BPF) and the associated harmonic com-

ponents, which depend on the motor rotation speed, constitute the main influence.

In a further step, based on drone-recorded speech signals, we filter the harmonic

components to fed a commercial speech recognizer without training or adaptation

to drone noise, at which we achieve a command recognition rate of 96.2 %.

1 Introduction

The success of drones in various application fields has led to increased noise emissions, which

are often regarded as noise pollution [1], not only in Germany. The previous research therefore

focused on the sound immission – e.g. by measurements of the sound pressure level [2, 3, 4]

and by spectral analyses of overflight noise [5], usually at static positions [6]. The most studies

of influence factors considered the number and type of rotor blades [6], the motor rotation

speed [2] and specific differences between quad, tri or hexcopters [5]. Beyond, some effects of

drone sounds on animals were investigated (e.g. [7]). The predominant consideration of noise

immission for humans and their environment resulted in investigations with typically static

measurement positions outside the drone.

Considering the sophisticated sensor technology and signal processing in drone systems, it

is surprising that the potential of audio signal analysis directly at a drone or in the near field was

not systematically analyzed so far. The processing of environmental information is primarily

focused on electromagnetic signals and image processing, including object recognition with a

variety of camera techniques, see e.g. [8].

During the last years, science, business and politics recognized the potential of drones in

agriculture operations [9]. A subtask in our EU project “Collaborative strategies of heteroge-

neous robot activity at solving agriculture missions controlled via intuitive human-robot inter-

faces (HARMONIC)” within the “ERA.Net RUS Plus” program 2018–2020, is the control of a

group of unmanned aerial vehicles (UAV, drone), which shall include an intuitive user interface

during agriculture operations.
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Whereas UAV-related image processing was intensively studied in civil and military en-

vironments, a targeted sound processing turns out to be challenging due to rotor and many

other noises at flying drones [5, 6, 7]. It is necessary to distinguish between the sound sources,

e.g. noise which disturbs the analysis and the classification of external signals such as speech

commands, acoustical events (characterizing environmental objects) or other useful signals that

even allow a characterization of drone operations or failures [4]. The typical, commercially

available, small drones do not provide audio recording facilities, but possible applications of

audio processing at the flying drone include interesting use cases, such as:

• Recognition of speech commands

• Classification of environmental sounds (e.g. alarm signal, traffic object or animal voice)

• Detection of flight situation or failures (combined with other sensor data)

• Active noise cancellation.

In this contribution we survey different test scenarios and measurement setups to directly

record audio signals including noise at a small (flying) drone, DJI Mavic Pro [10], with the

commercial Lavelier microphone Rode smartLav+ to simulate economically priced standard

equipment. In a first step of the analysis [11], we created a small database for different micro-

phone positions and test environments, and we then analyzed the according parameter influence

on the spectrogram and power-density spectrum.

In terms of a feasibility study, we wanted to examine, whether audio signals can be analyzed

adequately at drones and if there are specific sound characteristics or reproducible patterns.

Furthermore, we describe a simple word recognition experiment for seven imaginary commands

based on drone-recorded and noise-reduced signals. For this purpose, we used the Google Cloud

Speech-to-Text API [12] without additional training or noise adaptation.

2 Experimental methods

In this section, we summarize selected research questions and test scenarios including the pre-

requisites and experimental settings from [11].

2.1 Recording equipment and setup

Figure 1 – Exemplary measurement setup with fixed microphone and recording smartphone from [11]
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Figure 2 – Schematic top view of the drone dimensions from [10]

The used quadrocopter drone DJI Mavic Pro weighs 734 g and provides a thrust-to-weight

ratio (TTWR) of about 2.5 [13]. Figure 1 shows the drone and the recording equipment includ-

ing mounting material (in total 102 g) – a single omnidirectional micro Rode smartLav+ (9 g,

frequency range 20 Hz . . . 20 kHz) connected to a hanging smartphone Jelly Pro (86 g). The

additional drone weight of 13.9 % reduces the TTWR to ≈ 2.2, which slightly degrades the

flight quality. The Mavic drone can be interfolded for transport, so that there is no symmetry of

front and back side. Besides, one can expect differences in the rotor-induced airstream above

and below. To test different flight maneuvers, use cases or environments, we therefore recorded

at the selected micro positions in Table 1. All positions varied in a maximal dimension of about

20 cm (cf. Figure 2). The smartphone was fixed in the center to ensure an appropriate weight

distribution. Figure 3 visualizes the ten micro positions. All sounds were recorded at 44.1 kHz

and 16 bit and stored in WAV format (linear PCM).

Table 1 – Overview about the microphone positions at the drone

Description Abbreviation Position numeral

above centered CAbov 1

bottom centered CBott 2

bottom left side LBott 3

front centered CFront 4

front, right side RFront 5

back, right side RBack 6

front, left side 1 LFront 7

back, left side 1 LBack 8

front, left side 2 LFront2 9

front, right side 2 RFront2 10

2.2 Maneuvers in flight and acoustic diagnostics

For a preliminary acoustic analysis, five basic maneuvers in flight can be considered (hovering,

climb, dive, directional flight and rotation). Without external manipulation, a drone is hovering

in a constant position by self-adapting the thrusts of the rotors, based on the sensor data. By

increasing the motor rotation speed, the drone is forced to climb, and with decreased speed, the

drone is diving. If the rotation speeds are reduced in both frontal engines, a directional forward

flight can be achieved. Neighbored rotors are rotating reversely to compensate for the torque.

By increasing the speeds of two opposing rotors with the same direction, the drone starts to

rotate. Transitional phases between the maneuvers are characterized by non-stationary signals.
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Figure 3 – Micro positions from Table 1 – bottom (left) and side view (right), based on [10]

Figure 4 – Imitated cracks in one of the rotor blades (on the right)

The major part of the emitted noise is associated with the rotor movement. To test the

possibility of an acoustic flight diagnostics or damage prevention, we simulated a rotor defect

by slightly cracking one rotor blade target-oriented as shown in Figure 4. The resulting flight

maneuvers shall not be substantially influenced.

2.3 Flight environment and external sounds

Both, sensor technology and semi-automatic control of a commercial drone like Mavic limit the

environmental test scenarios. For example, the crash protector prevents a close side-approach

to walls, and the barrier detection starts to intervene already ≈ 30 cm over ground. Hence,

we only recorded simple in and outdoor maneuvers like hovering under a concrete ceiling at

micro 1 (above centered) or hovering over a wood plate, carpet, grassland or reed at micro 2

(bottom centered).

The decisive question for the use of drone-based audio signal processing is the chance of

analyzing ambient signals in spite of drone or wind-induced noise, preferably without elaborate

microphone technology (e.g. arrays). Exemplarily we have examined three scenarios:

• A passing (quiet) vehicle at 80 km/h on a country road – limousine BMW 5 series (E39)

• A passing (loud) vehicle at 30 km/h on a field – motocross motorcycle Yamaha JZF 250

• A loud and recurrent, tonal sound – ringing bell in a church tower.

The signals were recorded at the micro positions 2 and 4 (bottom centered or aside) and as fa-

vorable as possible, i.e. during hovering mode and in short distances of 1 . . .5 m to the measured

objects. The vehicles passed under the drone.
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(a) A1 - CBott/2 (b) A2 - CBott/2 (c) A3 - CFront/4

Figure 5 – Recording scenarios A1 . . . A3 and micro positions for the command recognizer test

2.4 Speech recognizer, test data and pre-processing

Beside gestures, a speech control represents a potential task in a close-by human-drone inter-

action. For this purpose we played random sequences of the seven German commands “Halt”,

“Stopp”, “Start”, “Fliege”, “Eins”, “Zwei” and “Drei”, prerecorded at 44.1 kHz, linear 16 bit

(mono) from a male voice aged 22. To test different effects of rotor noise, microphone position

and turbulent flow, we simulated three (loud)speaker positions with two speaker-microphone

distances (SMD) of 0.5 and 1.0 m respectively, while the drone was hovering – as visualized in

Figure 5. For demonstrating the effects of noise reduction, we used the ANR and notch-filter

methods via Noise Gate from Audacity and GitHub respectively [14, 15] and a low-pass fil-

tering with a cut-off frequency of 4 kHz. The drone-recorded command signals including the

real-world noise and certain noise-reduced versions of each command were fed in random order

to the Google Cloud Speech-to-Text API [12] without additional training or adaptation to the

specific noise conditions [11].

In total, the database contains 735 command realizations – in average 14 signals per com-

mand for each of the three scenarios, including original and up to four noise-reduced versions.

3 Results and discussion

3.1 Spectral characteristics

A representative rotation speed in the hovering mode is about 6,000 min−1. With two blades, the

associated blade passing frequency (BPF) results in fBP = 2 · fmotor = 2 ·6,000/60 s = 200 Hz.

In Figure 6, the BPF and its dominant harmonics can be observed in the frequency range up

to ≈ 3 kHz. The additional, characteristic peaks in the frequency ranges 3.9 . . .4.4 kHz and

6.5 . . .7.5 kHz are presumably related to interferences between the rotors (BPFs) and reflections,

since there is no external sound source. The overall decline of the curve characterizes the

frequency response of the microphone.

3.2 Influence of microphone position

In hovering mode, the expected signal differences between the micro positions 1 . . . 3 (above

centered versus bottom centered or aside) are less significant, at which the power density level in

the frequency range of 2 . . .6 kHz is on average 5 dB lower at position 1, whereas the dominant

harmonics increase by 5 dB at position 3, i.e., the previously assumed effects of air streams on

the positions and audio signals seem to be small. In contrast, front and back recordings show

reproducible differences, e.g. at micro position 8 (LBack) with a power density peak in the range

of 6.5 . . .7.5 kHz, which is about 15 dB higher than at position 7 (LFront). Recordings between
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Figure 6 – Power density spectra of 2 seconds hovering at micro position 3 (upper curve)

with dominant harmonics in a frequency range till ≈ 3 kHz vs. recording of silence (lower curve)

two rotors or close to a single rotor (position 9 or 10) reduce the influence and diversity (e.g.

by varying rotation speeds) of other sound sources and thus lead to more reproducible spectra,

which can ease a posterior filtering of disturbing noise.

3.3 Effects of flight maneuvers and drone speed

At the beginning of a climb, the rotation speeds are shortly increased for drone acceleration,

before they turn back to the previous level, as demonstrated in Figure 7 within the time interval

1.1 . . .2.5 s. The harmonic target frequencies in this example can be approximately calculated

as follows: fk,climb = fk,hover + k · fshi f t . The measured values are summarized in Table 2, rep-

resenting a shift of: fshi f t ≈ 0.32 · f0,hover = 65 Hz. In the two higher frequency ranges, the

peaks are shifted approximately by the same factor (e.g. the peak at 4,285 Hz to ≈ 5,700 Hz).

Figure 7 – Spectrogram of climbing (beginning at 1.1 s) for micro position 3 (bottom left)

Table 2 – Initial frequency shift at the climbing drone (measured values, rounded)

Harmonic k fk,hover in Hz fk,climb in Hz fk,shi f t in Hz

1 205 270 65

4 840 1,100 260

5 1,040 1,360 320

6 1,250 1,630 380

The other maneuvers such as dive (negative frequency shift at the beginning) result in

analog spectral effects, which also allow for an acoustic classification of the flight mode. In

contrast, the speed of directional flight is mainly controlled by the orientation angle of the drone,

217



(a) 10 km/h (b) 30 km/h

Figure 8 – Power density for different drone speeds at micro 3 (bottom left side) – directional flight, 2 s

(a) Motocross sound (drone off) (b) Motocross + hovering sound (c) Church bell + hovering sound

Figure 9 – Spectrograms of external sounds – motorcycle (dist. 1 m, mic. 2) and bell (5 m, mic. 4)

caused by slight modifications in the rotation differences only. Consequently, the power density

spectra at the lower drone speeds 10 and 30 km/h look similar, cf. Figure 8. For higher speeds

like 60 km/h (sport mode), the power density in the range till 2 kHz is rising considerably.

3.4 Flight environment, external sounds and rotor defect

By our experimental setup, we can not find reproducible spectral patterns related to the tested in

and outdoor flight environments – even in short distances of 30 . . .60 cm over ground or under

ceiling. Although the recorded signals are effected by sound reflections and absorption, the

spectra are presumably dominated by the influences of micro position and flight maneuver, as

previously discussed.

The car sounds are almost completely masked by the drone sound, i.e., not really audible or

detectable in the spectrogram, apart from a short level reduction, which is presumably caused

by the air blast in the moment of passing. In contrast, the motocross sounds (Figure 9a/b) and

also the bell-ringing (Figure 9c) can be still detected at close range.

The recordings of hovering maneuvers in position 8 (back, left side) close to the cracked

rotor show small but not really reproducible changes in the power-density spectrum, compared

to previous recordings with an intact rotor blade, cf. Figure 10.

(a) Intact blade (b) Defect blade

Figure 10 – Comparison of power-density spectra at micro position 8 – rotor blade intact vs. defect, 2 s
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(a) Clean speech (b) Speech & hovering sound

Figure 11 – Spectrogram of the command “Eins” at micro position 4 (front centered)

3.5 Recognition of speech commands

The results of the command recognition are indicative and shall illustrate the potential for the

further studies only – the experimental details and more results are described in [11]. Expect-

edly, the harmonic components of both, speech and rotor sounds, overlap to a large extent, in

particular in the frequency range till 2 kHz, as visualized in Figure 11. Already for a short SMD

of 0.5 m, the signal-noise ratio (SNR) is 0 dB only, and a targeted, BPF-related filtering of the

rotor sounds seems to be challenging. Table 3 summarizes the recognition rates (RR) for 343

command realizations at the best-possible speaker position (scenario A3 with 0.5 m distance),

after applying different methods of noise reduction.

Table 3 – Overall recognition rate (RR) and rejections in scenario A3 (343 signals) with SMD ≈ 0.5 m

Noise reduction SNR in dB Rejections in % RR in % RR w/o rejections in %

– 0 (100.0) – –

ANR 20 89.80 10.20 100.0

Notch & low pass 5 69.39 28.57 93.33

Notch & ANR 25 53.06 32.65 69.57

Notch-filtering 3 46.94 51.02 96.15

A command recognition without noise reduction is impossible, but although achieving an

SNR improvement of 20 dB, also the ANR method can not provide adequate input signals for

the non-adapted speech recognizer (rejection rate of 89.8 %). The notch-filtering seems to work

in certain limits due to a targeted suppression of harmonics. Regardless of an unacceptable

rejection rate of 46.9 %, the overall recognition rate exclusive rejections achieves 96.2 %.

4 Conclusions

As expected, most of the recordings show dominating blade passing frequencies (BPFs), which

depend on the four motor rotation speeds, and their associated harmonic components. Further

characteristic peaks can be observed in the frequency ranges 3.9 . . .4.4 kHz and 6.5 . . .7.5 kHz.

The signal characteristics vary with recording position and flight maneuver. It is difficult to

analyze sounds from environment. A simple command recognition, based on drone-recorded

and noise-filtered signals without recognizer training or adaptation to the noise conditions, is

possible. As a next step, we will study improved microphone constellations, e.g. a microphone

array, rather than new or more complex user scenarios. The experiments will include sound

recordings of an affixed drone in a semianechoic room to ensure reproducible conditions.
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