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Abstract: In automatic analyses of speech and emotion recognition, it has to be
ensured that training and test conditions are similar. The presented study aims to
investigate the influence of certain room acoustics on common features used for
emotion recognition. As a benchmark database this study focuses on the Berlin
Database of Emotional Speech. The following rooms were analysed: a) modern
lecture hall, b) older lecture hall, and ¢) staircase. For all rooms and their different
recording setups, different acoustic measures were captured. The speech record-
ings analysed in this paper were realized only at the ideal locations within the
rooms. Afterwards, 52 features (LLDs of emobase) were automatically extracted
using OpenSMILE and a sample-wise statistical analysis (paired ¢-test) was carried
out. Therefore, the number of acoustically degraded features and its effect size
can be linked to the acoustic parameters of the different recording experiments. As
result, 15% of the degraded samples show a highly significant difference regard-
ing all considered rooms. Especially MFCCs account for approximate 50% of the
degradation. Furthermore, the degradation is analysed depending on the emotion
and room acoustic.

1 Introduction

Voice-based human-machine interaction (HMI) “in the wild” is exposed to varying environment
conditions. Increasing speaker-to-microphone distance reduces the signal-to-noise ratio of the
speech and noise [1]. In addition, changing speech directions induce varying acoustics effects
into the captured signal. Consequently, acoustic features are degraded (cf. [2, 3]).

Also, the performance of speech emotion recognition can be compromised by previously
unseen conditions, which is typically due to a mismatch between a recognition system’s train-
ing and testing distributions. Research areas in HMI, investigating the size of the difference be-
tween ideal training and distorted testing distribution, are referred to as distant-speech-emotion-
recognition (DSER) and distant-speech-recognition (DSR). While remarkable progress has
been made in DSR [4, 5], it is moderately possible to transfer knowledge from DSR to DSER.
Speech emotion recognition is usually based on large feature sets, which contain low-level
descriptors (LLDs), delta regression coefficients, and their functionals [6], whereas automatic
speech recognition needs phonemes and language models and typically a limited number of
features such as Mel Frequency Cepstral Coefficients (MFCCs) and corresponding delta regres-
sion coefficients (Deltas). Commonly used classifiers are support vector machines (SVMs),
Gaussian mixture models (GMMs) and random forests (RFs), which are applied for speech
emotion recognition, whereas hidden Markov models (HMMs) are appropriate for automatic
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speech recognition. In both research areas, the current trend is applying deep learning tech-
niques [5, 7].

So far, speech emotion recognition “in the wild” has been analysed in terms of superposed
noise [8, 9], robust feature sets [10, 11] or feature pooling [7]. Furthermore, there are stud-
ies showing the impact of room acoustic characteristics on feature types and performance of
speaker state classification [1, 2, 3]. Schuller et al. [2] show the impact of reverberation us-
ing public room impulse responses for convolution of emotional coloured speech. The authors
report the suitability of feature types regarding different room impulse responses. In order to
do this, the accuracies of classification systems are compared [2]. A more detailed look at the
features is given by Eyben et al. [3]. The features are sorted in terms of degradation induced by
both reverberation and background noise. Especially, the relative importance of energy-related
features decreases when introducing reverberation and noise [3]. However, it is not possible to
gain insight into the impact of room acoustics in isolation on specific acoustic features belong-
ing to a special feature type. This issue is attributed in this paper.

In order to conduct a statistical feature analysis, emotionally coloured speech from a high
quality benchmark corpus is re-recorded in various rooms. The selected real-life rooms are
acoustically different to cover reverberated indoor environments, whereby an anechoic chamber
provides a reference for the comparison. Our contribution is providing feature sets least and
most impacted by room acoustics characteristics. Features analysed are LLDs and first order
regression coefficients (Deltas) representing a subset of the emobase feature set. By applying
paired z-tests, the means of each reverberated feature value set and the corresponding clean
feature value set related to an anechoic chamber, are compared in order to verify how significant
the differences are. A re-recording setup and a first insight regarding the aforementioned feature
analysis is given.

In the remainder of this paper, first, our recording setup will be introduced in Section 2
including the description of Berlin Emotional Speech database (EMO-DB), the microphone-
loudspeaker configuration and the understanding of selected signal processing fundamentals.
Room acoustics characteristics of four real-life rooms including an anechoic chamber are deter-
mined and interpreted in Section 3. Statistical feature analysis and power analysis is conducted
in Section 4 before concluding in Section 5.

2 Experimental Design

2.1 Emotional Speech Corpus

The benchmark speech database used in this study is the Berlin Database of Emotional Speech
(EMO-DB) [12] containing ten professional actors as speakers (five female). The female speak-
ers are on average 30.6 £ 5.6 years old and the male speakers are on average 28.8 + 3.1 years
old. Each of them simulates different emotion categories when asked to recite ten different
German utterances with neutral semantic content. Overall, the database contains 494 differ-
ent utterances spanning between 2-5 seconds in the following seven emotion categories: anger,
boredom, disgust, fear, joy, neutral and sadness. The original recordings sampled at 16 kHz
provide a high audio quality, minimizing extrinsic variability factors.

2.2 Recording Setup
2.2.1 Hardware and Software

In order to compare the impact of room acoustics on re-recordings, a similar microphone
(Sennheiser ME66), audio interface (Yamaha 01V96i), loudspeaker (Neumann KH120A) and
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recording software (Cubase Al6) setup was used. This hardware setup is characterized by a
highly linear frequency response. The MEG66 is especially suitable for picking up quiet signals
in noisy environments, as sound events outside the main speech direction are suppressed. It is
characterized by a distinct directional characteristic, a high degree of bundling, a low inherent
noise (10 dB according to DIN IEC 651), a reasonable maximum sound pressure level (126 dB)
and a high sensitivity. The frequency range is between 40 Hz and 20 kHz (£ 2.5 dB).

2.2.2 Microphone-loudspeaker configuration

DSER is influenced by the microphone-speaker distance, room acoustics effects and the signal-
to-noise ratio (SNR) of the speech and ambient noise [1]. Additionally, the SNR of the speech
and noise is influenced by room acoustics characteristics [13]. By aligning the microphone and
loudspeaker to each other with a similar distance of 1.4 m in an azimuth angle of 45°, cross-
room comparable re-recordings are created. As this experiment only aims at the investigation
of room acoustics characteristics on speech features and emotion recognition performance in
speech, effects in the re-recorded EMO-DB due to a low SNR have to be mitigated. In order to
achieve this, a SNR-optimal pair of power values (dB) of the source and reverberated signal is
determined experimentally in the anechoic chamber. This pair of power values is conveyed to
any other rooms.

2.2.3 Re-recording EMO-DB

EMO-DB was re-recorded with 44.1 kHz sampling rate in acoustically different rooms, which
are located at the Otto-von-Guericke University in Magdeburg. In order to exclude overlap
effects caused by previously played utterances, EMO-DB was played with a one-second pause
after each utterance. Equation 1 represents the re-recorded speech signal s() as a convolution
of the source signal x(¢):

s(t) =x(t) xh(t) +n(t), (1)
where A(t) is the room impulse response (RIR) of the channel from the source to microphone
and n(r) is background noise in the room. The RIR describes the acoustic properties of a
room in time domain in terms of sound propagation and reflections for a specific microphone-
loudspeaker configuration. By convolving the EMO-DB utterances with different IRs, various
room acoustic effects are created into the EMO-DB recordings.

3 Determination of Room Acoustics

3.1 Selected Room Acoustics

Four rooms were chosen to cover various reverberated indoor environments and to reach small
to large reverberation times. By re-recording in (a) an anechoic chamber, a reference was cre-
ated. Subsequent re-recordings were done in (b) a modern lecture hall, (c) an old lecture hall
and (d) a staircase on the ground floor. The modern and old lecture hall are almost equal in
volume, however, the modern lecture hall is equipped with state-of-the-art absorber walls, in
contrast to the old one. The staircase does not include any acoustic treatments.

Room impulse responses Ai(t) were obtained in 44.1 kHz using a maximum length se-
quence signal. Acoustics characteristics of these are provided for octave bands in the range of
125 to 4000 Hz using the Computer Aided Room Analyser (CARMA) Vers.4.0 software and a
Behringer ECM8000 ultra-linear condenser microphone with omnidirectional pattern. Regard-
ing DIN EN ISO 3382, two pairs of objective and subjective room acoustics are determined: (1)
the Clarity (C50) and the Definition index (D50), representing (logarithmic) ratios between a
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fraction and the entire or remaining RIR energy, and (2) the Reverberation Time (T30) and the
Early Decay Time (EDT), which are obtained from the decay curve.

The early-to-late arriving sound energy ratio C50 is based on the assumption that the sound
energy, which refers to a period of 50 ms after the arrival of direct sound, supports the clarity
of speech as perceived by human ears [14]. Later parts would be detrimental to the clarity [14].
Accordingly, C50 is calculated as shown in equation 2.

Jo " (1)d
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In order to determine early-to-total sound energy ratio D50, the energy portion is deter-
mined within the first 50 ms and related to the total energy, as described in equation 3.

Jo© "I (1)de
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Compared to D50, C50 would be more related to subjective assessments of the clarity [15].
The reverberation time T30 is determined by measuring the sound pressure drop in a range
from -5 dB to -35 dB. According to [16], the EDT is determined in a range between 0 dB and
-10 dB. Compared to T30, EDT corresponds better to the subjectively perceived reverberation

time. The reason for that is the initial portion of the sound decay, which is mainly responsible
for subjective impression of reverberation in a room [17].

C50=10-1g )

D50 = 3)

3.2 Measurement Determination

Table 1 — Room characteristics and averaged mid-frequency values of C50, D50, T30 and EDT for
octave bands in the range of 125 to 4000 Hz.

Room Volume [m3] C50[dB] D530[%] T30[s] EDT [s]
Anechoic chamber 19 30.10 90.61 0.13 0.15
Modern lecture hall 1990 10.55 85.71 0.83 0.14
Old lecture hall 1922 9.13 81.46 1.37 0.31
Staircase 134 2.30 62.23 1.74 1.56

Table 1 summarizes the volume and averaged acoustic characteristics of the considered
rooms for the baseline microphone-loudspeaker configuration (see 2.2.2). According to DIN
18041, the C50 and D50 values have not fallen below the limit for good speech intelligibility,
a value of C50 = 0 dB or D50 > 50%. As one can see, the determined C50 and D50 values
in the staircase are approaching the corresponding limit. The perception of clarity differences
is limited by AC50 =~ +2.5 dB [18]. Accordingly, the subjectively perceived clarity in both
lecture halls resemble each other, but highly differs from the one in the staircase.

The RIR varies not only in terms of descending speech clarity for the wider rooms, but also
in terms of higher reverberation times T30 and EDT, as one would expect. Yet, every room,
except the staircase, fulfils the volume-dependent nominal values for average T30 regarding
speech performances [17]. The relatively low EDT value can be explained by the fact that the
acoustic measurement was carried out in the vicinity of an absorber wall.

By measuring room acoustics at several places, varying room impulse responses inside a
room are obtained. As mentioned above, one acoustic measurement was conducted with a cross-
room equal microphone-loudspeaker distance as described in Section 2.2.2, whereby the micro-
phone was placed in the middle of the lecture halls and the staircase. This acoustic measurement
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is referred to as baseline measurement, per room. Twelve other measurements were conducted
at exposed places inside both lecture halls and the staircase. Then, frequency-dependent quan-
tities of measured values were obtained. These quantities are depicted in Figure’s 1 boxplots
displaying variation in RIRs for the octave bands in the range of 125 to 4000Hz, which is most
important for speech.
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Figure 1 — Baseline (x) and other exposed acoustic measurements per room: C50, D50, T30 and EDT
are measured in octave bands in the range of 125 to 4000 Hz. Selected rooms are an old lecture hall
(LH), a modern LH and a staircase.

4 Statistical Feature Analysis

4.1 Drawing Samples

OpenSMILE feature extraction toolkit [6] is used to extract a subset of the emotion specific
emobase feature set, namely 52 features as 26 acoustic LLDs related to energy, pitch, spectral,
cepstral, mel-frequency and voice quality and corresponding first order regression coefficients
(Deltas). The 26 LLDs are computed from each of the emotionally coloured utterances, which
are re-recorded in the four rooms. Feature values are extracted on frame-level, i.e., there are
52 feature value sets per utterance, each comprising measures of each 25 ms windows of the
utterance. 77064 pairs of feature value sets (494 utterances x 52 features x 3 rooms) are created,
whereby the first element of each pair corresponds to the anechoic chamber and the second
element to the modern lecture hall, the old one or the staircase. By applying paired t-tests, the
means between the two feature value sets are compared in order to verify how significant the
difference is. In the following, a feature value set corresponding to the modern lecture hall, the
old one or the staircase is referred to as samples for reasons of simplicity.

4.2 Paired Difference Test Statistics

15% of the samples show a highly significant difference with medium to large effect sizes,
regarding a Bonferroni-corrected [19] significance level (paired 7-test, p < 0.01/77064) and an
effect size of |d| = 0.5 defined by Cohen [20]. The LLDs are related to these highly significant
different samples, whereas none of the Deltas is related to those. As one would expect, the
staircase provides the main number of the highly significant different samples, namely 40%,
while the old and modern lecture hall provide each roughly 30%. Average effect sizes avg(|d|)
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Figure 2 — Per room and emotion, percentage of highly significant different samples (blue), related to
Frrps, and, per room, percentage of highly significant different samples, related to Fy, Fy; or Fp (red,
orange or green).

are determined to quantify the magnitude of the differences: avg(|d|) =0.73+£0.2, avg(|d|) =
0.72+0.18 and avg(|d|) = 0.69 £0.18 are measured in the modern lecture hall, in the staircase,
and in the old lecture hall, respectively.

Per room and emotion category, Figure 2 summarizes the percentages of highly significant
different samples, which are related to Fi | ps = emobase \ {Deltas} (blue bar). Then, LLD sets
are determined containing LL.Ds, which cause approximate 50% of the degraded samples re-
lated to a specific room and emotion category. Initially, these LLD sets involve four to seven
LLDs. Next, these sets are intersected per room to obtain new LLD sets sharing the same
LLDs over all emotion categories per room. The resulting LLD sets are Fy; = {mfcc_sma[l],
mfcc_sma[2], mfcc_sma[3], mfcc_sma[4]}, related to the modern LH, Fg = {IspFreq_sma[5],
mfcc_sma[2], mfcc_sma[4]}, related to the staircase, and Fp = {mfcc_sma[2]}, related to the
old LH, whereby |Fy| > |Fs| > |Fp|. As can be seen, the lower MFCCs are overrepresented
in Fy;, Fg and Fp. Furthermore, exactly one equal LLD in the new LLD sets exists, namely
mfcc_sma[2] with an average effect size avg(|d|) = 0.71 £0.2. Figure 2 presents the percent-
ages of highly significant different samples, which are only related to Fg, Fy; and Fp, respec-
tively, marked by the red, orange and green bars.

The rooms differ regarding the percentage of comparatively most and least degraded emo-
tion categories, whereby "degraded" and synonyms are related to highly significant differences
with medium to large effect sizes. In the staircase, the most degraded emotion category is joy,
closely followed by anger. Contrarily, the emotion category sadness, closely followed by neu-
tral, is most degraded in the modern lecture hall. In the old lecture hall, the most corrupted
emotion category is anger, closely followed by joy. The least degraded emotion categories are
boredom and disgust, respectively, in the old lecture hall, anger and joy in the modern one, and
boredom and fear in the staircase.

Regarding the percentages of Fg, it becomes apparent that these numbers are evenly dis-
tributed across all emotion categories. The old lecture hall is comparable to this observation,
unlike the modern lecture hall. As one could expect, the percentages of Fp are relatively small
due to |Fp| = 1, whereas the cardinalities of Fy; and Fy are |Fy;| = 4 and |Fs| = 3.

5 Conclusion

This paper provides further insights on room acoustic variations in reverberated indoor envi-
ronments. Furthermore, insights are presented regarding acoustic features impacted by differ-
ent room acoustics. Such an analysis is of an existing importance when emotion recognition
or related speaker state recognition in speech is applied in far-distant and voice-based HMI.
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The reported results represent foundations towards dealing with acoustic effects in reverberated
rooms in speech applications.

15% of the degraded feature value sets show a high impact, whereby most of the degraded
features are determined in the staircase, which highly differs from both lecture halls in terms
of C50, D50, T30 and EDT. Highly impacted features are the MFCCs, which acount for ap-
proximate 50% of the degradation. The highest degradation is observed for mfcc_sma[2] with
an average effect size avg(|d|) = 0.71 £ 0.2 over the different room acoustics and emotions.
Intuitively, least impacted are all of the LLDs’ Deltas.

Further analysis will be conducted by using a larger feature set with more LLDs, such as
the emolarge feature set, which is also common in the field of speaker state recognition (cf. [2]).
Additionally, correlation coefficients of degraded samples with the corresponding clean sample
will be determined in order to examine the temporal behaviour of features in an utterance.
Additionally, the recognition performance loss in terms of various training and test conditions
will be reported. Future work will also comprise strategies for de-reverberation (cf. [21]).
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