
RETICO: AN OPEN-SOURCE FRAMEWORK FOR MODELING

REAL-TIME CONVERSATIONS IN SPOKEN DIALOGUE SYSTEMS

Thilo Michael1, Sebastian Möller1,2

1Quality and Usability Lab, Technische Universität Berlin
2 German Research Center for Artificial Intelligence (DFKI), Berlin, Germany

thilo.michael@tu-berlin.de

Abstract: In this paper we present ReTiCo, a python-based programming frame-
work that utilizes the concepts of incremental processing to create interactive spo-
ken dialogue systems and simulations of conversational behavior. In contrast to
already existing toolkits like InproTK, our framework allows for quick visual cre-
ation of complex networks and is able to save and load incremental networks for
simulations, automated testing as well as analysis. It is focused on simplifying the
use of incremental modules to make research on specific tasks of an incremental
dialogue system (like real-time speech signal processing) and on the interaction
between different incremental modules easier.
We make this framework accessible as open source so that it can be used in research
on spoken dialogue systems and conversation simulation.

1 Introduction

Research in the domain of Spoken Dialogue Systems (SDS) shifted from linear processes where
each component fulfilled a specific task to complex real-time systems. These modules of spoken
dialogue systems (like speech recognition, natural language understanding, dialogue manage-
ment, etc.) are working incrementally, that means they need to work on early hypotheses of
other modules and should produce their own output as soon as possible. Because of this inter-
connectedness and complexity, incremental modules need to be integrated and tested in fully
incremental dialogue systems. This poses a challenge for most researchers that often do not
have the time and detailed knowledge to implement a complete incremental SDS to evaluate the
part they are researching.

The Incremental processing ToolKit (InproTK, [1]) is an open source library that utilizes
the incremental model described in [2] to enable researchers to develop real-time incremental
spoken dialogue systems. This toolkit declares a unified programming interface for incremental
modules and provides implementations for tasks like speech synthesis and speech recognition.
However, a framework to integrate, evaluate and simulate incremental modules is missing.

To make research on incremental spoken dialogue systems and the integration of modules
into such systems easier, we present ReTiCo, an incremental framework for building real-time
conversation-related applications. The framework includes a simple programming interface for
creating new incremental modules, as well as already implemented modules with state-of-the-
art models for tasks like speech recognition, speech synthesis, natural language understanding
and dialogue management. Additionally, ReTiCo provides a graphical user interface to connect
incremental modules and quickly build networks. This can be useful when comparing two
different versions of a module in a larger network.

The framework is written in Python, was tested on all major operating system and is avail-
able as an open source project1.

1Available at https://github.com/Uhlo/retico

134



2 Related Work

The conceptual idea of incremental modules forming hypotheses and transmitting them in in-
cremental modules was formalized the first time in [3]. InproTK [1, 4] and the subsequent
InproTKs [5] for situational dialogues is based on this model.

Especially components of spoken dialogue systems like speech recognition [6] and end-of-
turn prediction [7, 8] rely on incremental processing to form early hypotheses and thus need
to be integrated and evaluated in an incremental framework. Dialogue Manager that try to
facilitate turn-taking and backchanneling [9] need to incorporate early hypotheses from end-of-
turn predictors and natural language understanding modules.

Incremental processing and integrated evaluation is not only relevant for modules of spoken
dialogue systems, but also research on specialized systems like phonetically responsive spoken
dialogue systems [10] and human-to-human conversation simulation [11] require an incremen-
tal environment.

3 Architecture

The architecture of ReTiCo is largely based on the conceptual model described in [2] and im-
plemented in [4]. In this model, small increments of hypotheses formed from the current state
of information are transmitted via Incremental Units (IU). These store references to earlier cre-
ated IUs as well as references to the IUs they are grounded in. Every Incremental Module has a
left buffer (input buffer) and right buffer (output buffer), where incoming and outgoing IUs are
queued. Each incremental module has a processor that takes a number of incremental modules
from the left buffer, processes them to form a new hypothesis in form of an incremental unit and
puts it into its right buffer. In contrast to InproTK [4, 1], some key changes to the architecture
of incremental modules and units were made that are described in the following sections.

Networks that are build with the framework can be written to a file and loaded again. This
is useful for running automated evaluations or simulations with different networks and can also
help with collaborating with other researchers.

3.1 Incremental Units

In this framework, incremental units (IU) are defined mostly by their payload (the increment of
information they are transporting between different IUs). They contain a links to their creator

(the incremental module that created the specific IU), the previous IU (the previous IU created
by the same module) and the IU it is based on. References to these earlier IUs are only stored
for a limited number of time to avoid wasting computer memory.

Specific types of IUs like AudioIU and TextIU may specify their own set of attributes
that make up the payload of that IU. Because incremental units are always produced by an
incremental module, the framework adds this information automatically to the IU.

Additionally to the payload, IUs may also include meta data. This meta data is not required
for any IU, but may be useful for transmitting debugging information.

3.2 Incremental Modules

Incremental modules are designed to handle all concurrency that is necessary for incremental
communication with other modules. They contain a left buffer and a right buffer which are
embedded into a continuous loop. In most cases, an incremental module only needs to imple-
ment a method handling one incremental unit, while the framework handles the parallelization

135



and the passing of the incremental units. An incremental module defines one or more types
of incremental units that it is able to process and one type of incremental unit that it is able to
produce. That way, two independently created module may communicate with each other over
previously specified incremental unit types. Incremental modules have a setup and a teardown
function that is called before a network is run. This allows each module to allocate resources
and setting up resources before the network is activated.

Like incremental units, incremental modules may also contain meta data. This information
is saved when a network is written to file and contains data like position and size for a graphical
representation of the network (see Section 5).

Besides the standard incremental module, there are three special types that are predefined:
the consuming modules, producing modules and trigger modules. Producing modules are used
for modules that do not process any incremental units but rather generate increments from other
sources (like a microphone). In contrast to this, a consuming module only processes IUs and
does not produce any (e.g a speaker module). A trigger module is a special form of producing
module that does not continuously produce output, but submits a new IU whenever a trigger-
function is called.

The general interface and the specification of input and output IU types allow for clean
programming interface and an easy-to-use network-building interface that allows to connect
modules that have matching IU types.

3.3 Event System

To allow for communication between incremental modules and to components outside of the
incremental framework, incremental modules are able to register events. This is intended to
be helpful for signaling certain actions that take place inside a module, for example a dialogue
manager might trigger an event when the dialogue is finished. Each event is identified by a
name and may include additional information about the event.

At any time it is possible to subscribe to one or all events of a specific module with a
callback function that is executed as soon as a matching event triggers.

4 Predefined Modules

The most basic set of incremental modules included in the ReTiCo framework handles the
recording, processing and output of audio. The MicrophoneModule and the SpeakerModule

are able to access the hardware connected to the machine to record and play audio at any spec-
ified rate. The AudioDispatcherModule allows for granular control over when audio should
be dispatched (e.g. to a speaker). An AudioRecorderModule saves all incoming audio to a file.
This is often very useful for logging purposes.

ReTiCo uses the Google ASR and TTS services for speech recognition and speech syn-
thesis. Additionally a MaryTTS [12] server may be used for synthesis. The Natural language
understanding module uses the machine learning approach from rasaNLU [13]. For natural
language generation a simple sentence selection module is implemented.

The framework implements three different types of dialogue manager, namely an n-gram
dialogue manager, an agenda-based dialogue manager and a recurrent neural network dialogue
manager based on rasa [13]. A turn-taking dialogue management module uses simple turn
taking rules together with an end-of-turn-prediction for proper turn-taking and backchanneling.

136



5 Network Builder

Networks built with the ReTiCo framework can become large very quickly and connecting lots
of modules in code is often confusing and unintuitive. The network builder is a graphical inter-
face that runs in the browser. There, incremental modules can be added to a canvas, connected
to each other, run, save and load

Every module is visualized as a box that contains the title of the module and parameters
that were set (for example the language of the speech recognition, see Figure 1). The modules
have an enable and disable button for a quick control over which modules should be active.
On the corners of each module there are connection buttons for outgoing IUs (outward-facing
arrows) and incoming IUs (inward-facing arrows). Clicking on one of these buttons highlights
all modules that this module is able to connect to (i.e. all modules that produce or consume the
same type of IUs). During execution of the network, the content of the modules switches to
information about the latest incremental unit that was produced by that module (see Figure 2).

Figure 1 – A screen capture from the Network Builder web in-
terface with an open project (center), a list of available modules
(top right) and a list of already saved networks (bottom right).

Figure 2 – Three con-
nected modules inside
the ReTiCo Network
Builder.

On the top right is a tree-list-view that contains all available incremental modules. Modules
like Google TTS and ASR, as well as RasaNLU only appear after the required dependencies
are installed. When adding a module to the canvas, a small dialogue prompts for the parameters
that are needed to initialize the module.

The Network Builder allows users to save networks to a file and load them. Networks that
were created without the graphical user interface can be loaded as well (obviously, the position
of the modules on the canvas is not defined in this case).

TriggerModules, that generate an incremental unit of a certain type when triggered, have
a special interface in the Network Builder. During execution, these modules show an input
field, where users may add a payload for the IU that is being created once the trigger-button is
pressed.

137



6 Example Systems

With the range of already available incremental modules and the Network Builder to connect
modules by placing them on a canvas, creating networks becomes easier with almost no pro-
gramming effort required. In the following section we describe two example systems that we
have realized with the ReTiCo framework.

6.1 Sentence Repeating

Figure 3 – A network that repeats what the user is saying by synthesizing the recognized speech.

The most simple network (other than creating a feedback loop by just connecting a micro-
phone with a speaker) is a sentence repeating network, where the users utterance is recognized,
synthesized and spoken back to the user. As shown in Figure 3, this can be realized by connect-
ing the microphone to the speech recognition module. After that a text dispatching module is
used, that collects results from the speech recognition until it detects a pause. Then, the sen-
tence is passed to a speech synthesis module and the resulting audio is handed to a dispatching
module that dispatches the audio in packets to the speaker module.

6.2 Conversation Simulation

Figure 4 – A color-coded schema of a network that simulates a conversation with two virtual agents
talking to each other. Blue are logging modules, green are the dialogue managers, pink the end-of-turn
predictors, red the audio dispatcher modules and yellow the speaker modules.

A more complex example of a network is a conversation simulation. Figure 4 shows a
color-coded schema of such a simulation. The network contains basically two spoken dialogue
systems and thus the schema is mirrored. The red modules at the top of the figure are the two

138



audio dispatcher modules from both agents. They dispatch their audio to two speaker modules
(in yellow), to the audio recorder modules (in blue), to their own dialogue manager (in green)
and to the end of turn-predictor of the other agent (in pink) and finally to the speech recognition
modules of the other agent.

The dialogue manager of each agent receives IUs from three different modules: from its
end-of-turn predictor to estimate when the turn of the interlocutor is over, from its own NLU
module to process what the interlocutor is saying and from its own audio dispatcher module to
keep track of when the agent speaks. The dialogue act the dialogue manager produces contains a
dispatch-flag so that early hypotheses may already be synthesized. When the dialogue manager
decides to start speaking, the TTS module has a buffered output ready. The two blue modules
in the bottom are logging the produced dialogue acts and natural language sentences to disk.

This incremental setup allows the two agents in this network to converse over a long period
of time about the topic defined by the dialogue manager with a simple turn-taking strategy so
that sometimes utterances overlap each other.

7 Discussion

In this paper we presented ReTiCo, a framework for building real-time incremental conver-
sational systems that includes a variety of modules and offers a graphical user interface, the
Network Builder to easily link together incremental modules into a network. We explained the
architecture and the functionality of the user interface and outlined two example systems.

We think that this framework may be useful for researches who want to build, evaluate or
integrate spoken dialogue systems, conversation simulations or any other kind of incremental
speech system.

In future work we want to improve the Network Builder for better ease of use and perfor-
mance and we also want to include more incremental modules (like Sphinx speech recognition)
to make the framework useful for various different application areas.

Acknowledgements

This work was financially supported by the German Research Foundation DFG (grant number
MO 1038/23-1).

References

[1] BAUMANN, T., O. BUSS, and D. SCHLANGEN: Inprotk in action: Open-source software

for building german-speaking incremental spoken dialogue systems. In Proceedings of

Elektronische Sprachsignalverarbeitung (ESSV) 2010. 2010.

[2] SCHLANGEN, D. and G. SKANTZE: A general, abstract model of incremental dialogue

processing. Dialogue and Discourse, 2(1), pp. 83–111, 2011.

[3] SCHLANGEN, D. and G. SKANTZE: A general, abstract model of incremental dialogue

processing. In Proceedings of the 12th Conference of the European Chapter of the Asso-

ciation for Computational Linguistics, pp. 710–718. Association for Computational Lin-
guistics, 2009.

[4] BAUMANN, T. and D. SCHLANGEN: The inprotk 2012 release. In NAACL-HLT Workshop

on Future Directions and Needs in the Spoken Dialog Community: Tools and Data, pp.
29–32. Association for Computational Linguistics, 2012.

139



[5] KENNINGTON, C., S. KOUSIDIS, and D. SCHLANGEN: Inprotks: A toolkit for incremen-

tal situated processing. Proceedings of SIGdial 2014: Short Papers, 2014.

[6] SELFRIDGE, E. O., I. ARIZMENDI, P. A. HEEMAN, and J. D. WILLIAMS: Stability

and accuracy in incremental speech recognition. In Proceedings of the SIGDIAL 2011

Conference, pp. 110–119. Association for Computational Linguistics, 2011.

[7] HARA, K., K. INOUE, K. TAKANASHI, and T. KAWAHARA: Prediction of turn-taking

using multitask learning with prediction of backchannels and fillers. Proc. Interspeech

2018, pp. 991–995, 2018.

[8] MAIER, A., J. HOUGH, and D. SCHLANGEN: Towards deep end-of-turn prediction for

situated spoken dialogue systems. In Proceedings of INTERSPEECH 2017. 2017.

[9] TER MAAT, M., K. P. TRUONG, and D. HEYLEN: How agents’ turn-taking strategies

influence impressions and response behaviors. Presence: Teleoperators and Virtual Envi-

ronments, 20(5), pp. 412–430, 2011.

[10] RAVEH, E., I. STEINER, and B. MÖBIUS: A computational model for phonetically re-

sponsive spoken dialogue systems. Proc. Interspeech 2017, pp. 884–888, 2017.

[11] MICHAEL, T. and M. SEBASTIAN: Simulating human-to-human conversations for the

prediction of conversational quality. Fortschritte der Akustik-DAGA, 2018.

[12] SCHRÖDER, M. and J. TROUVAIN: The german text-to-speech synthesis system mary: A

tool for research, development and teaching. International Journal of Speech Technology,
6(4), pp. 365–377, 2003.

[13] BOCKLISCH, T., J. FAULKER, N. PAWLOWSKI, and A. NICHOL: Rasa: Open source

language understanding and dialogue management. arXiv preprint arXiv:1712.05181,
2017.

140


	Introduction
	Related Work
	Architecture
	Incremental Units
	Incremental Modules
	Event System

	Predefined Modules
	Network Builder
	Example Systems
	Sentence Repeating
	Conversation Simulation

	Discussion

