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Abstract: Voice Activity Detection (VAD), locating speech segments within an au-

dio recording, is a main part of most speech technology applications. Non-speech

segments, e.g., silence, noise, and music, usually do not carry any interesting infor-

mation in speech recognition applications and they even degrade the performance

of the recognition system in terms of both the accuracy and computational cost.

Various VAD techniques have been developed, but not all of them are appropriate

for a real-time application where the robustness, accuracy, and the processing time

are the main keys. In this paper, we propose a fast and robust VAD for a real-time

Automatic Speech Recognition (ASR) task. The main goal is to efficiently filter

out the non-speech segments before processing the speech segments of the audio

signal by the decoder. The proposed technique is a hybrid supervised/unsupervised

model based on zero-order Baum-Welch statistics obtained from a Universal Back-

ground Model (UBM). We will show that not only the processing time for the whole

speech recognition task is decreased by 39%, but also the Word Error Rate (WER)

is reduced by about 1.9% relative.

Introduction

Voice Activity Detection (VAD) is a fundamental signal processing step in almost every speech

processing application like speech coding, speech enhancement, speaker, and language recog-

nition. The non-speech frames (e.g., silence, noise, and music) are usually not as interesting as

the speech frames in these applications and are typically discarded before further processing.

Various VAD algorithms have been proposed from simple energy based ones in the time

or frequency domain (e.g., [1, 2]) to more complicated deep learning based statistical mod-

els (e.g., [3, 4, 5, 6]). Energy based algorithms work usually well on clean conditions but

the performance degrades rapidly in presence of environmental noise, background speech, or

other acoustic events like music. Statistical models, on the other hand, can learn the statisti-

cal properties of speech and non-speech frames based on the available training data. However,

these techniques are usually more complicated and may not work well on unseen environments

which have not been in the training data. Statistical models can be supervised, unsupervised, or

a combination of them. Supervised techniques are typically more accurate but more sensitive

to unseen environments. Although there are some adaptive techniques which adapt the deci-

sion threshold or the statistical models to the new environment, they usually need the whole

testing utterance for adaptation which is not applicable in real-time applications. Some other
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proposed techniques rely only on the evaluating audio signal to model and separate speech and

non-speech segments [7, 8]. Nevertheless, these techniques usually work in two stages which

need again the whole utterance for an offline process.

Depending on the application, an external VAD is usually required (e.g., in speaker and

language recognition) while in some other applications like Automatic Speech Recognition

(ASR) the VAD can be embedded in the acoustic model. The acoustic models in ASR are

nowadays based on deep learning techniques which make it very costly to process non-speech

parts of an audio recording. The impact will grow with the amount of non-speech parts, where

certain accuracy degradation can also be expected. For example, when the ASR system is

working in an always listening mode, continuous acoustic model evaluation all the time will

be too time and energy consuming and may not work well in noisy or background speech

conditions. Thus, in this paper we propose a fast, robust, and accurate enough external VAD

in front of the speech recognition system to mainly save time and energy and to increase the

ASR accuracy where it is possible. The proposed VAD takes advantage of a large amount of

unlabeled data to train a Universal Background Model (UBM) and a few amount of labeled data

to model the speech and non-speech classes with two very low dimensional vectors based on

zero order Baum-Welch statistics obtained from the UBM. In the testing phase, the Baum-Welch

statistics of an unknown audio segment is compared with these two speech and non-speech VAD

vectors and the decision is made based on a robust threshold.

The rest of the paper is organized as follows. Section 2 describes the proposed VAD algo-

rithm in details. Section 3 analyzes the performance of the proposed VAD in terms of accuracy,

computational cost, and robustness. Section 4 summarizes the paper and discusses future work.

Proposed Voice Activity Detection

Figure 1 shows the block diagram of the proposed VAD algorithm in both training and test

phases. Training phase takes advantage of a large amount of unlabeled data to train a Universal

Background Model (UBM) in an unsupervised manner and a small amount of labeled data to

train the proposed VAD vectors based on Baum-Welch statistics given the UBM in a supervised

manner. In the test phase, the Baum-Welch statistics of an unknown audio segment is compared

with the VAD vectors. The main parts of the algorithm are described in more details as follows.

UBM and Baum-Welch Statistics

UBM, in this work, is a Gaussian Mixture Model (GMM) which is a weighted sum of M Gaus-

sian densities as given by,

p(x|λ ) =
M

∑
i=1

wig(x|µ i,Σi) (1)

where x is a D-dimensional feature vector, i is the index of the i th Gaussian mixture, g(x|µ i,Σi)
are Gaussian mixtures defined as,

g(x|µ i,Σi) =
1

(2π)D/2 |Σi|
1/2

exp

{

−
1

2
(x−µ i)

′
Σ−1

i (x−µ i)

}

, (2)

and wi, µ i and Σi are the weight, the mean vector, and the covariance matrix of the i th Gaussian

density, respectively. The UBM parameters are estimated using the Expectation-Maximization

(EM) algorithm as in [9]. UBM represents the whole acoustic space and is trained with a large

amount of unlabeled data.
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Figure 1 – Block diagram of the proposed VAD algorithm in both train and test phases.

Baum-Welch statistics, are calculated given a set of feature vectors u = {x1,x2, ...,xT} and

the UBM as follows,

Ni(u) =
T

∑
t=1

Pr(i|xt ,λubm) (3)

Fi(u) =
T

∑
t=1

Pr(i|xt ,λubm)xt (4)

where Ni(u) and Fi(u) are the zeroth and the first order statistics, respectively, and Pr(i|xt ,λubm)
is the a posteriori probability for the Gaussian mixture i calculated as follows,

Pr(i|xt ,λubm) =
wig(xt |µ

ubm
i ,Σubm

i )

∑
M
k=1 wig(xt |µ

ubm
k ,Σubm

k )
(5)

VAD Vectors and Resemblance Measurement

Given a small amount of labeled speech and non-speech feature vectors and the UBM, the

zeroth order Baum-Welch statistics are computed for each class and saved as the VAD vectors.

Thus, each class will be represented by a vector of dimension M as follows,

ωsp = (N1(usp),N2(usp), ..,NM(usp)) (6)

ωnsp = (N1(unsp),N2(unsp), ..,NM(unsp)) (7)

where ωsp and ωnsp are speech and non-speech VAD vectors, respectively, M is the number of

Gaussian densities in the UBM, and usp and unsp are, respectively, all the labeled speech and

non-speech background feature vectors.

In the testing phase, the zeroth order statistics vector of an unknown short duration segment

is first computed (ω) and the resemblance ratio score will be based on the cosine of the angle
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between ω and each VAD vector as follows,

Ssp(ω) = cos(ω,ωsp)− cos(ω,ωnsp)

=
ωT

‖ω‖

(

ωsp
∥

∥ωsp

∥

∥

−
ωnsp

∥

∥ωnsp

∥

∥

)

(8)

where ‖.‖ denotes the Euclidean length and T is the transpose operation.

Experiments

In this section, we first explain the databases used for training and testing the proposed VAD

model and the ASR system, the frontends, configurations, and setups. Then we will evaluate

the performance of the proposed VAD algorithm in some experiments.

Database and Setup for VAD

Feature vectors are 12 dimensional Mel-Frequency Cepstral Coefficients (MFCCs) appended

with delta coefficients. The UBM consists 64 Gaussian mixtures trained on the unlabeled back-

ground data. The background data is composed of about 750h broadcast news (BCN) record-

ings, downsampled to 8Khz, in three languages EN, ES, and DE, and of about 750h telephony

signals, in DE, from inhouse data. About 28h of BCN data is labeled (25h speech and 3h non-

speech) out of which 70% is used for training of VAD vectors and 30% for testing (Test Set 1).

Almost all of the telephony data is labeled but we only use the same amount as labeled BCN

data for training of VAD vectors and testing (Test Set 2). In other words, both Test Set 1 and 2

include about 8.5h data. Labeling is performed by using a forced alignment process.

Database and Setup for ASR

The acoustic model is a Bidirectional Long Short Term Memory (BLSTM) presented in [10]

which is trained on approximately 6000h of telephony speech, including inhouse data, but also

publicly available corpora such as Fisher and Switchboard. Feature vectors are 12 dimensional

MFCCs. Temporal dynamics are captured by the concatenation of 9 consecutive frames and

an LDA transformation is used to reduce the feature vector dimension to 45. The language

model is 4gram Kneser-Ney trained on 1.5M words with approximately 2M pronunciations.

More details regarding the ASR system can be found in [10]. The test set is collected from an

inhouse dataset which consists of about 1500 utterances (≈ 2.5h), including a total number of

approximately 11,000 words.

Results

In this section, the performance of the proposed VAD is evaluated first as a classification task,

then the effect on an ASR system will be presented. The evaluation for a two-class classification

task (speech/non-speech) is performed by Equal Error Rate (EER) and the minimum of the

Decision Cost Function (minDCF). EER is referred to the equal False Alarm Rate (FAR) and

False Reject Rate (FRR) and DCF is a weighted sum of FAR and FRR in terms of the decision

threshold th,

DCF(th) = α1FRR(th)+α2FAR(th) (9)

where the weights α1 and α2 are defined based on the application. We have chosen α1 = 0.75

and α2 = 0.25 as proposed in [11] meaning that missing a speech segment will be more costly.
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Table 1 – The effect of the data used for training the UBM and VAD vectors and the mismatch between

train and test.

UBM VAD Vectors
Test Set 1 Test Set 2

EER% minDCF EER% minDCF

BCN
BCN 15.85 0.57287 25.02 0.84271

BCN + Telephony 15.85 0.56907 23.55 0.79773

BCN + Telephony
BCN 15.81 0.57207 24.94 0.81343

BCN + Telephony 15.74 0.56323 23.37 0.76333

Table 1 shows the performance of the proposed VAD in terms of EER and minDCF for

Test Sets 1 (only BCN) and 2 (only Telephony) for segment length of 20 frames (200ms). It

also shows the effect of the databases used for training of UBM and VAD vectors. As it can be

seen in this table, adding telephony signals to the training process of UBM and VAD vectors

improves the performance for both test sets although the improvement is not so significant.

Another observation is that the performance on the BCN test data is better than on the telephony

data. One reason could be due to the length of the window used for the feature normalization

(mean normalization) which has been 200 frames (2s) for the BCN data and 100 frames for the

telephony data, or it could be due to the background speech in the telephony data, or even some

errors in the labeled data obtained by the forced alignment, which needs more investigation.

Figure 2 shows the Detection Error Trade-off (DET) curves for segment lengths from 10

to 30 frames. DET curves are obtained on the test sets 1 and 2 (pooled). As it was expected,

the performance is improved by increasing the length of the processing segments. However,

in order to have a reasonable accuracy and speed and have short enough segments containing

only speech or non-speech signals, we use the segment length of 20 frames in the rest of the

experiments. As it can be seen in this figure, the decision threshold corresponding to the EER

is quite stable and the same for all the segment lengths. Having a nonsensitive threshold is

important in real applications.

Figures 3 and 4 show the VAD segmentation and the corresponding confidence scores for

two example utterances form BCN and telephony datasets, respectively. The quality is similar
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Figure 2 – DET curves for different segment lengths obtained on test sets 1 and 2 (pooled).
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Figure 3 – An example utterance form BCN data in time domain, time and frequency domain, and the

corresponding VAD scores and decisions.

Figure 4 – An example utterance form telephony data in time domain, time and frequency domain, and

the corresponding VAD scores and decisions.

for other examples. It is worth noting that no smoothing window is used unlike in other common

VAD algorithms. The proposed VAD shows quite stable and reliable scores to detect accurately

all kinds of non-speech segments including music and noise.

Table 2 shows the performance of the proposed VAD in the context of an ASR application.

The configuration of the ASR system and the datasets were mentioned in section 3.2. The use of

VAD shows, on this test set, a total relative improvement of 1.9% and 39% in WER and speed,

respectively.

Conclusions

A hybrid supervised/unsupervised Voice Activity Detection (VAD) algorithm was proposed in

this paper based on Baum-Welch zero order statistics obtained from a Universal Background

Model (UBM). The proposed VAD was evaluated as a speech/non-speech classification task as

well as in the context of an ASR application. The experimental results showed the stability
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Table 2 – The effect of the proposed VAD on the performance of the ASR system.

%SUB %DEL %INS %WER Speed (×RT)

ASR 24.1 3.9 4.0 32.0 0.89

ASR + VAD 23.6 3.9 3.9 31.4 0.54

and reliability of the VAD for both BCN and telephony data. Additionally, the proposed VAD

not only improves the accuracy of an ASR system but also decreases the computational time to

a great extent by filtering out the non-speech segments before decoding. The work presented

in this paper is an ongoing research and, therefore, more improvements are expected in future

work.
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