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Abstract: Voice Activity Detection (VAD), locating speech segments within an au-
dio recording, is a main part of most speech technology applications. Non-speech
segments, e.g., silence, noise, and music, usually do not carry any interesting infor-
mation in speech recognition applications and they even degrade the performance
of the recognition system in terms of both the accuracy and computational cost.
Various VAD techniques have been developed, but not all of them are appropriate
for a real-time application where the robustness, accuracy, and the processing time
are the main keys. In this paper, we propose a fast and robust VAD for a real-time
Automatic Speech Recognition (ASR) task. The main goal is to efficiently filter
out the non-speech segments before processing the speech segments of the audio
signal by the decoder. The proposed technique is a hybrid supervised/unsupervised
model based on zero-order Baum-Welch statistics obtained from a Universal Back-
ground Model (UBM). We will show that not only the processing time for the whole
speech recognition task is decreased by 39%, but also the Word Error Rate (WER)
is reduced by about 1.9% relative.

Introduction

Voice Activity Detection (VAD) is a fundamental signal processing step in almost every speech
processing application like speech coding, speech enhancement, speaker, and language recog-
nition. The non-speech frames (e.g., silence, noise, and music) are usually not as interesting as
the speech frames in these applications and are typically discarded before further processing.
Various VAD algorithms have been proposed from simple energy based ones in the time
or frequency domain (e.g., [1, 2]) to more complicated deep learning based statistical mod-
els (e.g., [3, 4, 5, 6]). Energy based algorithms work usually well on clean conditions but
the performance degrades rapidly in presence of environmental noise, background speech, or
other acoustic events like music. Statistical models, on the other hand, can learn the statisti-
cal properties of speech and non-speech frames based on the available training data. However,
these techniques are usually more complicated and may not work well on unseen environments
which have not been in the training data. Statistical models can be supervised, unsupervised, or
a combination of them. Supervised techniques are typically more accurate but more sensitive
to unseen environments. Although there are some adaptive techniques which adapt the deci-
sion threshold or the statistical models to the new environment, they usually need the whole
testing utterance for adaptation which is not applicable in real-time applications. Some other
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proposed techniques rely only on the evaluating audio signal to model and separate speech and
non-speech segments [7, 8]. Nevertheless, these techniques usually work in two stages which
need again the whole utterance for an offline process.

Depending on the application, an external VAD is usually required (e.g., in speaker and
language recognition) while in some other applications like Automatic Speech Recognition
(ASR) the VAD can be embedded in the acoustic model. The acoustic models in ASR are
nowadays based on deep learning techniques which make it very costly to process non-speech
parts of an audio recording. The impact will grow with the amount of non-speech parts, where
certain accuracy degradation can also be expected. For example, when the ASR system is
working in an always listening mode, continuous acoustic model evaluation all the time will
be too time and energy consuming and may not work well in noisy or background speech
conditions. Thus, in this paper we propose a fast, robust, and accurate enough external VAD
in front of the speech recognition system to mainly save time and energy and to increase the
ASR accuracy where it is possible. The proposed VAD takes advantage of a large amount of
unlabeled data to train a Universal Background Model (UBM) and a few amount of labeled data
to model the speech and non-speech classes with two very low dimensional vectors based on
zero order Baum-Welch statistics obtained from the UBM. In the testing phase, the Baum-Welch
statistics of an unknown audio segment is compared with these two speech and non-speech VAD
vectors and the decision is made based on a robust threshold.

The rest of the paper is organized as follows. Section 2 describes the proposed VAD algo-
rithm in details. Section 3 analyzes the performance of the proposed VAD in terms of accuracy,
computational cost, and robustness. Section 4 summarizes the paper and discusses future work.

Proposed Voice Activity Detection

Figure 1 shows the block diagram of the proposed VAD algorithm in both training and test
phases. Training phase takes advantage of a large amount of unlabeled data to train a Universal
Background Model (UBM) in an unsupervised manner and a small amount of labeled data to
train the proposed VAD vectors based on Baum-Welch statistics given the UBM in a supervised
manner. In the test phase, the Baum-Welch statistics of an unknown audio segment is compared
with the VAD vectors. The main parts of the algorithm are described in more details as follows.

UBM and Baum-Welch Statistics

UBM, in this work, is a Gaussian Mixture Model (GMM) which is a weighted sum of M Gaus-
sian densities as given by,

M
p(xl2) = Y wig(xlu;, %) M
i=1
where x is a D-dimensional feature vector, i is the index of the i th Gaussian mixture, g(x|u;,X;)
are Gaussian mixtures defined as,
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and w;, i; and X; are the weight, the mean vector, and the covariance matrix of the i th Gaussian
density, respectively. The UBM parameters are estimated using the Expectation-Maximization
(EM) algorithm as in [9]. UBM represents the whole acoustic space and is trained with a large

amount of unlabeled data.
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Figure 1 — Block diagram of the proposed VAD algorithm in both train and test phases.

Baum-Welch statistics, are calculated given a set of feature vectors u = {x;,x2,...,xr } and
the UBM as follows,

Ni(u) = Zpr(i‘xt»)“ubm) &)

=1

~
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where 4;(u) and .%;(u) are the zeroth and the first order statistics, respectively, and Pr(i|x;, Aypm)
is the a posteriori probability for the Gaussian mixture i calculated as follows,

wig (x| g 2
Yty wig (x| )
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VAD Vectors and Resemblance Measurement

Given a small amount of labeled speech and non-speech feature vectors and the UBM, the
zeroth order Baum-Welch statistics are computed for each class and saved as the VAD vectors.
Thus, each class will be represented by a vector of dimension M as follows,

Osp = (N (usp), N2 (tsp), o At (usp)) (©6)
Wypsp = ('/Vl (unsp)u f/VZ(Mnsp)u oy J%W(unsp)) @)

where @y, and @, are speech and non-speech VAD vectors, respectively, M is the number of
Gaussian densities in the UBM, and uy), and u,,, are, respectively, all the labeled speech and
non-speech background feature vectors.

In the testing phase, the zeroth order statistics vector of an unknown short duration segment
is first computed (@) and the resemblance ratio score will be based on the cosine of the angle
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between w and each VAD vector as follows,

Ssp(@) = cos(®, Wsp) — cos(®, Wysp)

_o' [ oy o ®
loll \llospll @]

where ||.|| denotes the Euclidean length and T is the transpose operation.

Experiments

In this section, we first explain the databases used for training and testing the proposed VAD
model and the ASR system, the frontends, configurations, and setups. Then we will evaluate
the performance of the proposed VAD algorithm in some experiments.

Database and Setup for VAD

Feature vectors are 12 dimensional Mel-Frequency Cepstral Coefficients (MFCCs) appended
with delta coefficients. The UBM consists 64 Gaussian mixtures trained on the unlabeled back-
ground data. The background data is composed of about 750h broadcast news (BCN) record-
ings, downsampled to 8Khz, in three languages EN, ES, and DE, and of about 750h telephony
signals, in DE, from inhouse data. About 28h of BCN data is labeled (25h speech and 3h non-
speech) out of which 70% is used for training of VAD vectors and 30% for testing (Test Set 1).
Almost all of the telephony data is labeled but we only use the same amount as labeled BCN
data for training of VAD vectors and testing (Test Set 2). In other words, both Test Set 1 and 2
include about 8.5h data. Labeling is performed by using a forced alignment process.

Database and Setup for ASR

The acoustic model is a Bidirectional Long Short Term Memory (BLSTM) presented in [10]
which is trained on approximately 6000h of telephony speech, including inhouse data, but also
publicly available corpora such as Fisher and Switchboard. Feature vectors are 12 dimensional
MFCCs. Temporal dynamics are captured by the concatenation of 9 consecutive frames and
an LDA transformation is used to reduce the feature vector dimension to 45. The language
model is 4gram Kneser-Ney trained on 1.5M words with approximately 2M pronunciations.
More details regarding the ASR system can be found in [10]. The test set is collected from an
inhouse dataset which consists of about 1500 utterances (= 2.5h), including a total number of
approximately 11,000 words.

Results

In this section, the performance of the proposed VAD is evaluated first as a classification task,
then the effect on an ASR system will be presented. The evaluation for a two-class classification
task (speech/non-speech) is performed by Equal Error Rate (EER) and the minimum of the
Decision Cost Function (minDCF). EER is referred to the equal False Alarm Rate (FAR) and
False Reject Rate (FRR) and DCF is a weighted sum of FAR and FRR in terms of the decision
threshold ¢h,

DCF (th) = oy FRR(th) + 0o FAR(th) ©)

where the weights o and  are defined based on the application. We have chosen ¢ = 0.75
and o = 0.25 as proposed in [11] meaning that missing a speech segment will be more costly.
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Table 1 — The effect of the data used for training the UBM and VAD vectors and the mismatch between
train and test.

Test Set 1 Test Set 2
UBM VAD Vectors | £ER% [ minDCF | EER% | minDCE
BN BCN 15.85 | 057287 | 25.02 | 0.84271
BCN + Telephony | 15.85 | 0.56907 | 23.55 | 0.79773
BON + Telephony | BCN 1581 | 057207 | 2494 | 0.81343
BCN + Telephony | 15.74 | 0.56323 | 23.37 | 0.76333

Table 1 shows the performance of the proposed VAD in terms of EER and minDCF for
Test Sets 1 (only BCN) and 2 (only Telephony) for segment length of 20 frames (200ms). It
also shows the effect of the databases used for training of UBM and VAD vectors. As it can be
seen in this table, adding telephony signals to the training process of UBM and VAD vectors
improves the performance for both test sets although the improvement is not so significant.
Another observation is that the performance on the BCN test data is better than on the telephony
data. One reason could be due to the length of the window used for the feature normalization
(mean normalization) which has been 200 frames (2s) for the BCN data and 100 frames for the
telephony data, or it could be due to the background speech in the telephony data, or even some
errors in the labeled data obtained by the forced alignment, which needs more investigation.

Figure 2 shows the Detection Error Trade-off (DET) curves for segment lengths from 10
to 30 frames. DET curves are obtained on the test sets 1 and 2 (pooled). As it was expected,
the performance is improved by increasing the length of the processing segments. However,
in order to have a reasonable accuracy and speed and have short enough segments containing
only speech or non-speech signals, we use the segment length of 20 frames in the rest of the
experiments. As it can be seen in this figure, the decision threshold corresponding to the EER
is quite stable and the same for all the segment lengths. Having a nonsensitive threshold is
important in real applications.

Figures 3 and 4 show the VAD segmentation and the corresponding confidence scores for
two example utterances form BCN and telephony datasets, respectively. The quality is similar
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Figure 2 — DET curves for different segment lengths obtained on test sets 1 and 2 (pooled).
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Figure 3 — An example utterance form BCN data in time domain, time and frequency domain, and the
corresponding VAD scores and decisions.

Fresuency (i)

a— - - T o
02 e Y 4 . 7
LSRN 3 / o -
H NG B R R X
02 = / e
) e O A Y s = Y N A
o e s 12 s F Y S T S S Y X T i Ty
> T T T T T T T T 1 T
5 2re - \oiiolle ol a e oo e itollc Ao R ofa R of OO0 0L0 OO0 OO0 0100000 &
G- 4
2 1= Q0000001001000 0 10-010-0:0- 01001000 - Q010 - 8 i —
o5 T N B A T 11 I Y

Figure 4 — An example utterance form telephony data in time domain, time and frequency domain, and
the corresponding VAD scores and decisions.

for other examples. It is worth noting that no smoothing window is used unlike in other common
VAD algorithms. The proposed VAD shows quite stable and reliable scores to detect accurately

all kinds of non-speech segments including music and noise.

Table 2 shows the performance of the proposed VAD in the context of an ASR application.
The configuration of the ASR system and the datasets were mentioned in section 3.2. The use of
VAD shows, on this test set, a total relative improvement of 1.9% and 39% in WER and speed,

respectively.

Conclusions

A hybrid supervised/unsupervised Voice Activity Detection (VAD) algorithm was proposed in
this paper based on Baum-Welch zero order statistics obtained from a Universal Background
Model (UBM). The proposed VAD was evaluated as a speech/non-speech classification task as
well as in the context of an ASR application. The experimental results showed the stability
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Table 2 — The effect of the proposed VAD on the performance of the ASR system.

\ | %SUB | %DEL | %INS | %WER | Speed (xRT) |

ASR 24.1 39 4.0 320 0.89
ASR +VAD | 23.6 39 3.9 314 0.54

and reliability of the VAD for both BCN and telephony data. Additionally, the proposed VAD
not only improves the accuracy of an ASR system but also decreases the computational time to
a great extent by filtering out the non-speech segments before decoding. The work presented
in this paper is an ongoing research and, therefore, more improvements are expected in future
work.
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