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Abstract: Although DNN-HMM based ASR systems can provide better accuracy than
GMM-HMM based ASR systems in general, their performance still suffers from
mismatches between the training and testing conditions. Online adaptation is a very
effective way to make an ASR system more robust to a variety of environments and
speaker characteristics. However, given large number of DNN parameters and only a
limited amount of adaptation data, it is very challenging to perform DNN online
adaptation effectively. In this paper, we propose two methods, namely i-vector and KL-
Divergence regularized Linear Hidden Network, for performing DNN online adaptation
for real-time speech recognition systems. The proposed methods were evaluated on a
voice search data set. Over 3% relative word error rate reduction (WERR) was achieved
from each of the proposed methods alone. A further relative WERR of over 2% was
achieved from combining them.

1 Introduction
Deep Neural Networks (DNN) techniques are widely used for acoustic modeling in the state-
of-the-art Automatic Speech Recognition (ASR) systems nowadays [1,2]. Although DNN-
HMM based ASR systems can provide better accuracy than GMM-HMM based ASR systems
in general, they are still very sensitive to speaker, channel, and background changes. This is
reflected by large variance in accuracy across different speakers, channels, and environments
that we have observed. Online adaptation is a very effective way to make an ASR systemmore
robust to a variety of environments and speaker characteristics. It has been widely used in
HMM-GMM based ASR systems. However, it is very challenging to perform DNN online
adaptation effectively, because a DNN acoustic model usually contains millions of parameters
and adapting them with a very small amount of data (i.e. a single utterance) in a traditional
way is usually not effective for improving accuracy. On the other hand, online adaptation is
subject to strict constraints on computational cost because of the latency requirement for real
time speech recognition systems. Many approaches for DNN adaptation have been developed
over the years, such as linear transformation based approaches in [6,7,14], regularization
based approaches in [9,16] and i-vector based approaches in [5,15]. Most of them use offline
supervised DNN adaptation when the adaptation data is available beforehand and there’s no
real-time constraint on the computational cost.

In this paper, we propose two methods, namely i-vector and KL-Divergence (KLD)
regularized Linear Hidden Network (LHN), for performing DNN online adaptation for real
time speech recognition systems. We demonstrate that they each can provide significant
accuracy improvement and also show that combination of the two methods can further
improve the performance.
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The paper is organized as follows: Section 2 describes the online i-vector adaptation for
DNNs. Section 3 summarizes the online KLD regularized LHN adaptation for DNNs.
Experimental results are shown in Section 4. We conclude the paper in Section 5.

2 Online i-vector adaptation for DNNs
The i-vector technique is very popular in speaker verification and speaker recognition because
they encapsulate the relevant information about a speaker’s identity in a low dimensional
fixed-length representation [4, 10, 11]. This also makes them an attractive tool for speaker
adaptation techniques for ASR [5].

The i-vector extraction has been studied in many works [4, 10, 11]. Suppose the acoustic
feature vectors are generated from a universal background model (UBM) represented
as a GMM with K diagonal covariance Gaussians

~ (. ; (0), ) (1)

with mixture coefficients , means and diagonal covariances . Moreover, data ( )
belonging to speaker are drawn from the distribution

( )~ (. ; ( ), ) (2)

where ( ) are the means of the GMM adapted to speaker . The main idea about the i-
vector is to assume the speaker-dependent means ( ) and the speaker-independent means(0) can be modeled as( ) = (0) + ( ), = 1 (3)

of size × , is called the factor loading submatrix corresponding to component . is
the speaker identity vector (i-vector) corresponding to . Each contains bases which
span the subspace with important variability in the component mean vector space.

Given the UBM, the factor loading submatrix and speaker data{ ( )}, i-vector
can be estimated with the eq. (4).( ) = ( ) ( ), (4)

where ( ) = + ( ) , (5)

( ) = ( ), (6)( ) = ( ) ( ( ) (0)), (7)

47



where ( ) and ( ) are the zero-order and centered first-order statistics accumulated from
speaker data { ( )}. ( ) is the posterior covariance of ( ) given the observations of
speaker .

Model hyperparameters { } can be estimated using the EM algorithm to
maximize the ML objective function [11]. In the E step, the accumulators in eqs. (8) and (9)
are collected over all the speakers.= ( ) ( ), (8)

= ( )( ( ) + ( ) ( )) (9)

The M step update is given as eq. (10):= = 1 (10)
Using i-vector for DNN adaptation has been studied in [5] where the input features to

DNN are augmented with i-vectors computed from the speakers in the training set for training
the DNN acoustic model. At recognition time, the i-vector for a given speaker is computed
with the adaptation data from the speaker in offline mode and augmented with the speech
features in the decoding process. So the i-vector based adaptation described in [5] is
supervised and is done in offline batch-mode. Our focus in this paper is to apply such i-vector
based DNN adaptation in online mode in which i-vector is computed and updated while the
recognition process is ongoing. One major challenge with such approach is how to take
advantage of having more and more available data down the session. Another major challenge
is how to update i-vector in an efficient way so that the updating process will not cause extra
latency to a real time ASR system which usually has strict constraint to latency. Since there is
no available data to be used for computing i-vector at the very beginning of a session, we also
need to deal with this situation as well.

We proposed to carry out i-vector based online adaptation in a per utterance basis along
with an ongoing recognition session. That is to calculate i-vector with the currently available
utterances in the session and use it in recognizing the next utterance in the same session. We
proposed to carryover either the sufficient statistics or the i-vector estimated based on the
previous utterances in a session in the i-vector updating process for taking advantage of more
available utterances as the recognition process proceeds. We used a universal i-vector
estimated over all the training data as the initial i-vector in recognizing the first utterance in
each session. The i-vector is updated immediately after each utterance is recognized. In case
of sufficient statistics carryover, the statistics accumulated from the current recognized
utterance is first merged with the history statistics accumulated from the previous utterances
in the same session. Then a refined i-vector is estimated based on the merged statistics. In case
of i-vector carryover, the new i-vector is a weighted average of the previous i-vector and the
one estimated with the current recognized utterance. Length normalization of i-vectors has
been shown to be effective to boost performance in speaker recognition systems [12]. In our
work described in this paper, we also observed that normalizing i-vector to unit length could
improve performance.
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3 Online KLD regularized LHN adaptation for DNNs
The basic idea of LHN [7] is illustrated in Figure 1. A linear layer is inserted immediately
before the output layer to transform the activation of the last hidden layer to better match the
adaptation data.

The weights of LHN are initialized with an identity matrix. A standard back-propagation
algorithm is used to train the weights of the LHN with the adaptation data while keeping the
weights of the original network fixed. However, adapting a DNN with limited amount of data
using the standard back-propagation can cause the DNN to overfit the data, hence deteriorate
the previously well trained networks. To mitigate the overfitting problem, KLD regularization
[9] can be applied to the adaptation criterion. The idea of KLD regularization is to prevent the
posterior distribution estimated from the adapted DNN from deviating too far away from that
estimated with the original DNN by adding the KLD between the two distributions to the
Cross Entropy objective function.

= (1 ) 1 ( | ) log ( | )
+ 1 ( | ) log ( | ) (11

1)

where is the number of samples in the adaptation data and ( | ) is the target probability.( | ) is the posterior probability estimated from the SI DNN and computed with a
forward pass using the SI DNN. is the regularization weight. is the total number of states
in the output layer. Eq. (14) can be reorganized to

= 1 [(1 ) ( | ) + ( | )] log ( | ) (12)

= 1 ( | ) log ( | ) (13)
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Figure 1 - Illustration for Linear Hidden Network(LHN)

49



where ( | ) (1 ) ( | ) + ( | ) (14)

From eqs. (11) to (14), we can see that applying the KLD regularization to the cross
entropy criterion equals to changing the target probability distribution from ( | ) to( | ), which is a linear interpolation of the distribution estimated from the SI DNN and the
ground truth alignment of the adaptation data.

Like online i-vector adaptation, online LHN adaptation is also carried out in a per
utterance basis. The weights of LHN are updated iteratively with the data from the utterance
that has just been recognized in a session. Therefore, it is unsupervised adaptation. Early
stopping can be applied to the process to further mitigate the overfitting problem and reduce
the adaptation time.

4 Experimental results
We conducted adaptation experiments based on a voice search data set, which contains over
3000 hours of audio data for training the DNN acoustic models. There are over 1 million
speakers in the training data set. A large number of speakers have less than 10 seconds of
audio. We evaluated the performance on a test data set which contains about 90 hours of audio
data. There are 901 speakers with over 35k utterances and 330k words in the test set. The
number of utterances per speaker ranges from 1 to over 100.

The speech data was processed using a 25ms window with window shift 10ms. Each
frame of the acoustic features contains 45-dimensional MFCC plus 7-dimensional
Fundamental Frequency Variation (FFV) features [13] to form a 52-dimensional feature
vector. All dimensions in the acoustic features were quantized to 8-bit integers.

A diagonal UBM for i-vector extraction with 2048 32-dimensional Gaussian mixture
components was built on the training data using the maximum likelihood criterion. Only the
first 12 dimensions of the 45-dimensional MFCC were used in the UBM training. 9
consecutive frames were spliced together and projected down to 32 dimensions using LDA.
The speakers in the training data set were clustered into about 12k speaker groups to speed up
the i-vector training. All speakers in the same group shared one i-vector. The dimension of the
i-vector was set to 100 in our experiments. After i-vectors were extracted for each speaker
group, length normalization was applied to them.

Two feed-forward DNNs were trained from the training data: acoustic features only DNN
as the baseline and i-vector augmented DNN. The difference between the two DNNs is
whether the i-vectors are included in the input features. Both DNNs share the same topology
for the rest of the network. With a context window of 15, the dimension of the input vector
for the baseline DNN is 780, while that for the i-vector augmented DNN is 880. There are 7
hidden layers with ReLU activation functions in the networks. The first 2 layers have 2048
nodes each. The next 2 layers have 1024 nodes each. The next layer is a bottleneck layer with
52 nodes for parameter reduction, followed by another layer with 256 nodes. The output layer
has 9000 softmax units that correspond to the tied context-dependent HMM states obtained
from a phonetic decision tree. Both DNNs were first trained with the stochastic gradient
descent (SGD) algorithm using the frame-level Cross Entropy criterion followed by the
Hessian-free sequence training algorithm using a state-based minimum Bayes risk criterion as
described in [17].
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During recognition, the online adaptation was carried out in a per utterance basis. The i-
vector and LHN transformation matrix were updated using the utterance that had just been
recognized. The LHN transformation matrix was inserted after the bottleneck layer with a
dimension of 52 by 52. The i-vector was initialized as the universal i-vector and the LHN
transformation matrix was initialized as an identity matrix for the first utterance of each
speaker. The recognition output was used as the pseudo-truth for LHN adaptation.

Table 1 -WER and relative WERR for online I-vector and LHN adaptation

In Table 1, we compare the WERs obtained by using different online adaptation methods,
i.e. i-vector only, LHN only, and combination of i-vector and LHN. The baseline DNN
without any adaptation achieved 9.29% WER. All three online adaptation methods
outperformed the baseline. The relative WERR from i-vector only online adaptation is 3.34%.
The relative WERR from LHN only online adaptation is 3.55%. A relative WERR of 5.60%
is achieved by combining i-vector with LHN which brings down the WER to 8.77%. The
sufficient statistics carryover method was used for the i-vector based adaptation in Table 1.
We also experimented the i-vector carryover method and observed almost the same accuracy
improvement as with the statistics carryover method. Since the i-vector carryover method
requires much less memory compared with the statistics carryover method, it could be more
appealing for memory limited usage case.

Figure 2 - Relative WERR for speaker groups with different number of utterance
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To investigate the impact of the number of utterances for a speaker on the adaptation
performance, we divide the speakers into 12 groups based on the number of utterances per
speaker as shown in the x-axis in Figure 2. The y-axis presents the relative WERR over the
baseline for the speakers in each group. From the figure, we can see that the gain from LHN
only and i-vector+LHN adaptation is significant for all speaker groups. The i-vector only
adaptation outperforms the baseline significantly for most speaker groups except the one with
1 to 4 utterances. This seems to indicate that the i-vector is not very robust when the amount
of adaptation data is very small. However, the KLD regularized LHN works very well even
with just a few utterances.

5 Conclusions
In this paper, we proposed to use i-vector and LHN to perform DNN online adaptation in a
per utterance basis for real time ASR systems. For i-vector based online adaptation, we
proposed to carryover either i-vector sufficient statistics or the previous i-vector itself from
utterance to utterance for taking advantage of having more data along a session to improve the
performance. We also proposed to use a universal i-vector, which is estimated with all training
data, in recognizing the first utterance to improve accuracy for the first utterance in a session.
For LHN adaptation, we investigated to apply the KLD regularization to the objective function
to overcome the overfitting problem and apply early stopping to the optimization process to
reduce the adaptation time. Experiments on a voice search task demonstrated that our
proposed approaches made i-vector and LHN adaptation effective and affordable for
performing online adaptation for real time speech recognition systems. Over 3% relative word
error reduction was achieved from the i-vector only online adaptation and the LHN only online
adaptation individually. A further improvement of over 2% was achieved from combining i-
vector with LHN online adaptation. Note that our proposed online adaptation methods can be
used along with offline batch-mode adaptation. In this case, the initial i-vector and LHN
transformation matrix will be estimated with the adaptation data.
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