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Abstract: In this paper, we report some recent improvements to DNN/HMM hybrid 
acoustic modeling for the EML real-time large vocabulary speech recognition sys-
tem, including the introduction of speaker adaptive long short term memory units 
(LSTMs) and efficient online decoding with deep bidirectional LSTMs. Based on a 
thorough latency analysis of our baseline large vocabulary speech recognizer we first 
abandon multi-pass recognition with fMLLR adapted acoustic features and further 
simplify decoding by dropping text independent vocal tract length normalization 
(VTLN) which was identified as a major bottleneck for real time applications. Sub-
sequently, we improve accuracy by a variety of measures that include artificial train-
ing data augmentation and the use of additional features derived from an online 
speaker diarization module currently under development. Moreover, we investigate a
hierarchy of feed forward and recurrent neural networks for a further reduction of 
word error rate. Finally, we demonstrate that established DNN pruning techniques 
are also applicable to bidirectional LSTMs, resulting in both an appropriate network 
size and substantial runtime savings. Our experiments are carried out on the publicly 
available WSJCAM0 corpus. Being simultaneously recorded with both a head-
mounted and a desk-mounted microphone it enables us to study the impact of each of 
the proposed methods also in case of a channel mismatch between training and test 
data. The methods described in this paper yield an improvement of up to 15 percent 
relative to the baseline DNN/HMM acoustic model.

1 Introduction
In the past decade, automatic speech recognition has experienced huge gains from the use of 
deep neural networks (DNNs) for acoustic modeling [1]. Powerful hardware and sophisticated 
training algorithms enabled the training of deep networks with tens of millions of parameters   
that show improvements of more than 30% compared to the conventional Gaussian Mixture 
Model (GMM/HMM) approach [2]. More recently, recurrent network architectures like, for 
example, the gated recurrent unit (GRU, [3]) and the long short term memory cell (LSTM, [4, 
5, 6, 7]) have been introduced to better capture the temporal dynamics of speech. Bidirection-
al LSTMs [8, 9, 10], cf. Sec. 3, are nowadays state-of-the-art, but production systems with 
online decoding requirements are frequently still using LSTMs or even plain feed forward 
neural networks (FFNN) with fMLLR adapted features and multi-pass decoding [11].
The work presented in this paper seeks to drop the latter by utilizing the superior modelling 
capabilities of recurrent neural networks. After a brief review of our baseline approach in Sec-
tion 2, we sketch some recent enhancements towards our goals in Section 3 and present some 
experimental results – for both matched and unmatched test data – in Section 4. Finally, Sec-
tion 5 concludes the paper with an outlook on further work.

1 S. Kunzmann is now with Amazon.com, Inc.
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2 Baseline System Overview
Our baseline approach to acoustic modeling is based on the RASR/NN toolkit introduced in 
[12] and is described in some detail in [13]. In our standard training setup, we use rectified 
nonlinearities [14], supervised discriminative pre-training [2], stochastic gradient descent with 
L2 regularization and dropout, and a frame-wise cross-entropy training criterion. For most 
languages our neural networks are trained with 500 - 1500 hours of data. The training data is 
usually divided into two or three (overlapping) subsets, each used to run one independent 
training epoch on a copy of the network. Subsequently, the copy yielding the lowest cross-
validation error rate is used as seed model for the next training epoch. 
Feature extraction computes 16 MFCCs in VTLN feature space [15], the degree of voicing, 
and an optional pitch value. A gender-informed, semi-randomized version of vocal tract 
length perturbation (VTLP, [16]) is used to augment the training data. Temporal dynamics are 
captured by the concatenation of 9 consecutive frames and an LDA transformation is used to
reduce the feature vector dimension to 45. For online speaker adaptation in a multi-pass de-
coding scenario we apply an additional per speaker fMLLR transform that is estimated in the 
conventional GMM/HMM framework [17]. Finally, a context window of 5 to 17 frames is 
applied which outputs 225 to 765 features that are subjected to global mean and variance 
normalization and serve as neural network input. Once training has converged, we compute 
DNN state priors [18] for decoding by averaging the activations of the softmax output layer 
over all training frames. 
Our decoder itself is a state of the art large vocabulary continuous speech recognizer [19, 20], 
which has been highly optimized for commercial use, but does retain the flexibility of a re-
search decoder. Recent enhancements that are not in the scope of this paper include online 
versions of voice activity detection [21], speaker diarization, and language identification; see, 
however, Sec. 3.4 for the use of speaker diarization features as input to neural network based 
acoustic modeling.
We found text independent VTLN [15] working best, if a decent amount (more than 1.5 – 2
seconds) of audio is available for the GMM-based computation of a speaker’s warping factor 
during runtime. Since improvements quickly vanish if only a limited amount of audio can be 
buffered in order to fulfill the latency requirements of many of our target applications, we 
decided to no longer use VTLN, but rely on plain MFCCs instead.

3 Recent Improvements

3.1 Recurrent Neural Networks
For the training of recurrent neural networks, we switched from RASR/NN to RETURNN 
[22], a configurable neural network training toolkit based on Theano [23] that provides a Py-
thon interface for the seamless access to acoustic feature vectors and Viterbi alignments com-
puted with our RASR based acoustic modeling and decoding environment. With the main 
focus on the implementation of different recurrent cells (GRU, LSTM, etc.), the toolkit also 
offers several well-known optimization methods like, for example, ADADELTA [24] and 
ADAM [25], and additional features such as multi-GPU training. Moving from ADADELTA 
to ADAM, which is also the recommended optimization method in [8], gave us remarkable 
performance gains in terms of both training time and accuracy across several languages and 
for all recurrent and non-recurrent network topologies we considered so far.
The tight integration of RASR into RETURNN can also be utilized during runtime, if RASR 
created feature vectors are passed to Theano for neural network forwarding, and the resulting 
scores are returned to RASR’s Viterbi search for decoding. However, since this is not feasible 
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in a highly scalable production environment, we implemented LSTMs in our commercially 
used variant of RASR. So far, our online production decoder only uses the „Vanilla“ long
short term memory cell (cf. [7]) without peepholes that constitutes the building block for the 
hidden network layers. The forward equations are repeated here for the sake of the discussion 
that follows:

                                                                                                             (1)
(2)
(3)
(4)
(5)

                                                                                                                       (6)

Here, xt is the layer input at time t, ct is the internal state at time t, and yt is the output at time t;
Wz, Wi, Wf, Wo, are the forward weight matrices for the block input and the three gates (input,
output, forget), Rz, Ri, Ro, and Rf are the respective recurrent weight matrices, and bz, bi, bo,
and bf are bias vectors.  φ(.) denotes the input and output block nonlinearity (here: φ(.) =

tanh()), σ(.) is the logistic sigmoid function, and denotes element-wise vector multiplica-
tion.

3.2 Online decoding with bidirectional LSTMs
Our BLSTMs use the topology suggested in [9], i.e. we do a combination of the forward and 
backward direction after each layer, cf. Figure 1.  We use the same number of memory cells 
for each direction (usually 512) and thereby double the number of hidden layer parameters 
when compared to a unidirectional LSTM. However, in Sec. 3.5 we discuss that node pruning 
can be used to find a network topology that retains the improved accuracy of the BLSTM with 
a number of parameters less than for the unidirectional LSTM.

Figure 1 - Bidirectional LSTM topology (solid lines; cf. [9]). Forward (fwd) layers process feature vectors {x1,

x2, ... xT} from left to right (t = 1, 2, … T), while for backward (bwd) layers the order is from right to left (t = T, 

T-1, ... 1). Dashed boxes show a single layer feed forward network for phoneme recognition that provides op-
tional input features (cf. Sec. 3.4).

Bidirectional LSTMs frequently yield lower word error rates than unidirectional LSTMs [4,
8], but are not straightforward to use in a production environment that has to carefully balance 
accuracy versus latency: Whereas there are no latency issues with unidirectional LSTMs that
process sequences of feature vectors in forward direction, i.e. for t = 1,…, T, BLSTMs make 
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use of future information by processing sequences also in backward direction, i.e. for t = T, 

..., 1. Buffering the entire sequence of T feature vectors is clearly infeasible in online recogni-
tion, and therefore a limited look-ahead has to be used for the backward directed computation 
of acoustic model state posteriors. In [9] the BLSTM is evaluated on (overlapping) sliding 
windows with up to 100 frames and the (weighted) average network output over several win-
dows is used as state posterior. Our approach is similar, but uses just one window and no 
overlap. In backward direction we reset the cell’s internal state ct and output yt to zero for 
each window, whereas in forward direction we do so only at utterance end.

3.3 Data augmentation with WSOLA
Data augmentation via perturbation of the speaking rate has been introduced in [26] and uses 
an instance of the WSOLA algorithm (waveform similarity overlap and add; cf. [27]). After 
removing VTLN/VTLP from the acoustic frontend we used WSOLA with two different speed 
perturbations (90%, 110%) as proposed in [26].

3.4 Feature augmentation
More recently, we have started to use additional input features for (B)LSTM training, namely 
the output of a phoneme recognition network, and features used by an online speaker diariza-
tion module currently under development. Both approaches are orthogonal, but have not been 
combined yet. 

3.4.1 Phoneme recognition features
This approach is motivated by the use of two hierarchical feature extraction networks in our 
previous approach to TANDEM acoustic modeling [28, 11], and a combination of a Time
Delay Neural Networks (TDNN) and a LSTMs has been used more recently also in [29]. Our 
approach uses a shallow network with a single, non-recurrent, rectifying hidden layer and a 
softmax output layer for phoneme recognition, cf. Figure 1.  Phoneme training targets are ob-
tained via coarsening from the same context dependent state alignment that is used for 
(B)LSTM training, and so far we also use the same input features, i.e. LDA transformed 
MFCCs, but with a context window. The investigation of alternative features and alignments 
is subject to future work. 

3.4.2 Speaker diarization features 
Speaker adapation of DNN/HMM hybrid acoustic models can be achieved by either using 
speaker adapted input features that are usually computed via fMLLR in a conventional Gauss-
ian framework [30], or by augmenting the training feature vectors with a speaker characteris-
tic. In [31], i-vectors are appended to plain MFCC feature vectors, and it is demonstrated that 
the approach yields result as good as those obtained with VTLN and speaker adapted input 
features.
Our approach does not compute i-vectors, but seeks to re-use features designed for online 
speaker diarization. For that purpose, we compute LDA-projected MAP-adapted supervectors 
for each speaker. 16 MFCC and their first order delta features are computed and a universal 
background model (UBM) with 64 Gaussians is trained. For each training speaker we run 
maximum a-posteriori adaptation of the UBM and create a speaker dependent supervector of
dimension 2048 out of the Gaussians’ means. An LDA transform trained with background 
data from approx. 3000 speakers is used to reduce the supervector to typically 50 – 200 di-
mensions. Finally, the projected supervector is appended to each of the respective speakers’
base feature vector (cf. Sec. 2).
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3.5 Node Pruning
Deep neural networks with millions of parameters are still a challenge to deploy in online 
automatic speech recognition systems. For non-recurrent networks weight matrix factorization
via singular value decomposition (SVD) [32], weight truncation [33], node pruning or combi-
nations thereof [34] have been proposed to reduce the computational cost without significant 
loss of accuracy. Apart from [35], where SVD is used at an early stage of layer-wise network 
construction, all methods usually require some additional training for the fine-tuning of the
pruned network. 
Node pruning based on the output norm [34] measures the importance I(i, l) of unit i in layer l

by the average L1 norm of outgoing links:

(7)

For LSTM networks the output yl of layer is connected to the 4 forward matrices Wz
l+1, Wi

l+1,
Wf

l+1, and Wo
l+1 of layer l+1 (cf. Eq. (1)-(4)), which are stacked vertically before Eq. (7) is

evaluated for each output unit i. For BLSTMs the summation is carried out over the stacked 
forward matrices for both the forward and backward direction of layer l+1. Finally, all hidden 
units are sorted according to their importance , and units with low values are removed along 
with all relevant links, which in case of LSTM cells includes links to all internal gates and 
recurrent matrices as well.
We applied output norm based node pruning to all but the first hidden layer and ended up with 
pruned networks that show the (expected) bottleneck shape for both directions. Moreover, it 
turned out that the achieved reduction is roughly the same for both directions.
In the original work [34] it is argued that information about the importance of a node is more 
reliable if pruning is applied to the fully trained network. Consequently, training time increas-
es because fine-tuning of the reduced network is required to retain accuracy. In our work we 
seek to keep training time constant by applying node pruning right after the full network has 
been constructed via layer-wise pre-training. In doing so the information used for pruning 
may be less reliable, but more training iterations are performed on the reduced network.

4 Experiments
For our experiments we used the WSJCAM0 database [36], which was recorded simultane-
ously with both a close-talk and a desktop microphone. For training we used approx. 125
hours of close-talk data, while tests were carried out with 2.5 hours of close-talk data and 2
hours of (non-matching) desktop data.
All neural network acoustic models use an output layer with 4500 context-dependent triphone 
states and were trained using ADAM with model averaging after 2 epochs as optimization 
method. Starting with an initial learning rate of 10-3 we ran 20 training epochs and selected the 
epoch with lowest cross-validation error rate for decoding. Testing was done with a Kneser-
Ney smoothed 4-gram language model (created from the training scripts) with an 11.100
words vocabulary and a total of approx. 255.000 n-grams. Search parameters were tuned only 
once (for the BLSTM acoustic model with 512 cells in each of the 5 hidden layers) to obtain
the same processing speed as for the feed forward baseline network.
Table 1 reports results for both baseline feed forward neural network and uni- and bidirec-
tional LSTMs. Removing VTLN from the acoustic frontend causes an increased word error 
rate for the test set recorded with the desktop microphone, but – as expected – is easily com-
pensated by the LSTM models. The BLSTM acoustic model works best with a look-ahead of 
128 frames (16 % relative improvement over the baseline), but all subsequent experiments 
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reported below were carried out with a look-ahead of 64 frames in order to keep the decoder’s
initial latency below one second. The observed degradation for the decoding of desktop data 
with the unidirectional LSTM acoustic model requires further investigation; further experi-
ments indicate that a larger feature context can further reduce the word error rate for unidirec-
tional LSTMs.
Table 1 - BLSTM decoding results with different look-ahead (la) for matched (close-talk) and unmatched (desk-
top) test data. Forward networks use a context of 11 frames, whereas LSTM and BLSTM do not.

% WER

Network type Features Comment close-talk desktop total

FFNN, 5x512 MFCC+VTLP baseline ctx=11 20,9 24,5 22,5

MFCC 20,9 25,2 22,8

LSTM, 5x512 MFCC ctx= 1 17,2 27,8 21,9

BLSTM, 5x512 MFCC la= 32 17,3 24,8 20,6

BLSTM, 5x512 la= 64 16,8 23,3 19,7

BLSTM, 5x512 la=128 16,3 22,2 18,9

BLSTM, 5x512 la=256 16,7 22,3 19,2

Table 2 shows results for decoding with the original BLSTM acoustic model and with two 
variants that apply node pruning after pre-training to reduce the number of hidden units by
either 50 or 66 percent. Originally developed for forward DNNs in [34] it turns out that node 
pruning is applicable to BLSTMs as well and helps to find an appropriate model size.
Table 2 - BLSTM decoding results with and without node pruning after layer-wise pre-training. 

% WER

Network type Features pruning close-talk desktop total

BLSTM, 5x512 MFCC none 16,8 23,3 19,7

50% 16,5 22,8 19,3

66% 16,7 22,9 19,4

Finally, Table 3 gives results for the data and feature vector augmentation techniques 
sketched in Sections 3.3 and 3.4.
Table 3 – Decoding results with and without additional features (phn: phoneme recognition features, cf. Sec. 
3.4.1; spk: speaker diarization features, cf. Sec. 3.4.2).

% WER

Network type Features Comment close-talk desktop total

BLSTM, 5x512 MFCC baseline 16,8 23,3 19,7

MFCC wsola:0.9, 1.1 16,2 22,9 19,4

+ phn 16,5 22,7 19,2

+ 50 spk 16,7 23,3 19,6

FFNN, 5x512 MFCC baseline 20,9 25,2 22,8

+ 50 spk 19,8 24,6 21,9

+200 spk 19,8 24,7 22,0
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The use of WSOLA with two different speed perturbations (0.9 and 1.1) and the cascaded 
network approach depicted in Figure 1 both yield small gains (2.5 % rel.). Whereas for the 
decoding with FFNN acoustic models the use of 50 additional diarization features yields a 
relative gain of 3.9 percent, they do not yet improve decoding with BLSTM acoustic models. 
We plan to revisit this topic once the development of our online speaker diarization module is 
completed.

5 Conclusion and Outlook
In this paper we described some recent progress on neural network based acoustic modeling 
in the EML real time transcription platform that yield improvements over our DNN baseline 
of 22% for matched test data and 10% relative for unmatched test data, respectively. Future 
work will address training recipes for larger and more heterogeneous training data and further 
improvement of word error rates for neural network training with speaker diarization features.  
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