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Abstract: In this paper we propose a new analysis-by-synthesis algorithm for multi-
pitch tracking. It uses spectral base components extracted from isolated piano notes
to model a spectrum. The advantage compared to other signal-based algorithms
is the application of musical knowledge for the identification process. The Pian-

oTranscriber uses a limited set of the 88 musical notes of the standard piano. The
extracted time series for all possible notes are used for a resynthesis step. Original
and resynthesized signals are compared using an adapted onset-detection function.
The PianoTranscriber was parametrized, optimized and evaluated using subsets of
the publicly available MAPS-database. For the evaluation, the PianoTranscriber

was compared to the state-of-the-art algorithm SONIC. The results show that the
PianoTranscriber outperformed SONIC using base components from the analyzed
piano and achieved similar results using base components from other pianos.

1 Introduction

Transcription by listening to music is difficult, because the ability to identify the correct f0 of a
musical note (the so called “absolute pitch”) is required. According to [1], only 1 out of 10000
people in North America and Europe have this ability, which makes an automatic system very
desirable. Thus, in recent years many approaches for Multi-Pitch-Tracking (the identification
of the individal notes played at any given time) have been proposed that can be grouped into
signal-based approaches [2, 3], matrix factorization [4], and neural-network-based approaches
[5, 6]. Many signal-based approaches such as [2] use an auditory filterbank that mimicks the
human perception of music to obtain a mid-level representation. In this mid-level-representation
or directly in the unscaled magnitude spectrum [3], the most pronounced frequency component
is estimated and used to model an artificial musical note of the perceived pitch. This note
is iteratively subtracted from the entire signal representation. Approaches based on matrix
factorization use linear basis transforms to decompose a complex music signal into its basic
components, which are supposed to represent notes. Approaches based on neural networks
use the time-domain or several mid-level representations as input for the neural networks,
which are responsible for the classification step. In the signal-based approaches, no spectral
information from recorded isolated notes has been used so far for the note identification. However,
incorporating this information could be used to improve the results of signal-based approaches
for Multi-Pitch-Tracking and may create a useful foundation for further tasks in Automatic
Music Transcription (AMT). This work therefore proposes an algorithm called PianoTranscriber

that incorporates musical knowlege by using base components extracted from real isolated notes
of a standard piano.
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2 Signal model and main idea

Like many signal-based approaches for multipitch tracking such as [2, 3], we assume a musical
note model as the superposition of multiple sinusodials with harmonic relations to the funda-
mental frequency f0. All components have an individual amplitude and phase. In this paper,
the MIDI pitch, which assigns an integer value to every musical note, is used to describe notes.
The relationship between f0 and MIDI-pitch p is given in equation (1), where the chamber tone
A with f0 = 440Hz is assigned to the MIDI pitch 69. A standard piano with 88 notes has a
MIDI-pitch-range between 21 and 108.

f0 (p) = 2
p−69

12 ·440Hz (1)

The FOURIER transform assumes that a signal is the sum of single sinusodials with individual
amplitudes and phases. Similar to this assumption, the main idea of the PianoTranscriber is
to assume that the combination of more than one note is the sum of single isolated notes.
Thus, the PianoTranscriber takes advantage of the limited set of musical notes and use base
components obtained from one reference piano to model the entire signal frame by frame with
these components.

2.1 Overview of the PianoTranscriber algorithm

The PianoTranscriber compares an input signal frame by frame with note components, which
are extracted from the public available MAPS database [7] that is further used for determining
several parameters. The MAPS database will be described in Section 3.1 in detail. The method
is similar to the FOURIER-transform, which compares an input signal with pure sinusodial
components. In Figure 1, the outline of the PianoTranscriber is visualized. An input signal
xorig [k] is windowed using a gaussian window of length 93 ms and an overlap of 83 ms and
converted into a sequence of frame vectors �x [k] with the time index k. Next, the short-term
magnitude spectrum is calculated for every frame vector to obtain a sequence of spectra �X [n]
with the frequency index n. Using the highest cosine similarity between all base components
and the input spectrum, the pre-dominant note is identified. The corresponding base component
is subtracted from the entire input spectrum. Up to nine more notes are iteratively identified
and subtracted to obtain a maximum number of ten likely notes. This differs from the proposed
signal-based algorithms, in which an harmonic signal representation out of the pre-dominant
f0 is created and subtracted from the input spectrum. The result of the frame by frame spectral
difference are binary time-series for all base components. These are stored in the matrix C [m].
Every row represents the time-series of one base component with the new time index of the
m-th frame. The time-series are refined using knowledge about minimum tone duration and
cross-correlation in the time domain. Afterwards, the refined time series C′ [m] are used to
resynthesize a time signal xres,1 [k]. An energy-based onset detection is performed in the input
and resynthesized signals to compare these. In this way, erroneously detected notes can be
removed from the time-series, which need to be refined once again. The final time series C′′′ [m]
are used to resynthesize the final output time signal xres,2 [k].

2.2 Base components

The base components are calculated from the 88 isolated notes played by a reference piano in
two different loudnesses forte and mezzoforte. Similar to the recognition process in Section 2.1,
the audio signals of the individual notes are each split into frames of 93 ms with an overlap of
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Figure 1 – The PianoTranscriber: An input signal xorig [k] is windowed and converted to a sequence of
frames�x [k]. In the spectral domain (�X [n]), every frame is decomposed into its note components using the
spectral difference to obtain time-series C [m] for every note. After refining the time-series, these are used
for a resynthesis. Original and synthesized signals are compared using an energy-based onset-detection
to identify further detection errors. xres [k] and C′′′ [m] are the final output signal and time-series.

83 ms. The FOURIER transform with a Gaussian window is calculated to obtain the magnitude
spectrum for every frame. The low-energy frames close to the start and end of the signal do not
contain information and are thus deleted. For each of the 5512 frequency bins between 0 Hz
and 11025 Hz, mean value and standard deviation over time are calculated from the remaining

tonal frames. The mean vector �̂X [n] is a model spectrum for the base components and the
standard deviation vector for each frequency bin provides information about the spectral flux.
The PianoTranscriber uses in total 2 ·88 = 176 base components to compare their similarities
with the input signal.

2.3 Spectral similarity for note identification

For conventional f0-extraction from speech, autocorrelation [8], cross-correlation [9] or peri-
odicity functions [10] are well-known methods. They all work in the lag domain, where the
lags of maxima or minima are potential candidates for the true period length and one of these is
finally chosen as the fundamental period based on various criteria. For multipitch tracking in
music signals, one big advantage is the limited set of notes. The PianoTranscriber assumes that
a combination of more than one note is the sum of its isolated notes. Thus, another identification
approach can be used here – the spectral difference between the analyzed frame and the base
components. If the difference between an analyzed frame and a base component is small, it
is likely that the corresponding note was active in this frame and the similarity between the
analyzed frame and the base component is high. The cosine similarity (2) is used to calculate the
similarity, because it is independent of amplitudes and a correlation measure.

sim =

N

∑
n=1

�X [n] �̂X [n]

√

N

∑
n=1

�X [n]2

√

N

∑
n=1

�̂X [n]2

(2)

Because the maximal similarity between an analysis frame and all base components needs
to be determined, this results in an argmax(·)-decision. Using the cosine similarity without
restricting the maximum distance, leads to too many candidates for each frame. A minimum
correlation of θ = 0.6 was empirically found to be a good value to reduce the number of false
notes without increasing the number of missing notes.
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2.4 Refinement

Result of the frame based identification are binary time series for all 88 notes representing
whether or not each note is present in each of the analyzed frames. Since the frame shift is
only 10 ms, it is unlikely that a note would change its state (present or absent) faster than once
every few frames. The MAPS database, which was used for parametrizing, contains very fast
chromatic scales with a note duration of 50 ms. This would mean that one single note must
appear at least in five consecutive frames. Thus we tried to find a useful minimum note duration
between 30 ms and 70 ms using a parameter sweep and tn,min = 60ms was the most suitable note
duration in terms of further reducing the number of missing and false notes. To take this into
account, the first derivatives of all time-series are calculated. If a note is detected for the first
time, the derivative is larger than zero. If it is detected for the last time, smaller than zero. If
the distance between on- and offset is less than six frames, the detected note is assumed to be
erroneously detected and set to zero in this interval. Too short gaps between detected notes were
treated analogously.

Another step for refinement is a cross-correlation of the entire time-domain signal with the
time functions of all previously detected notes. Using a note that is correctly identified, this will
lead to a much larger global maximum than using an incorrectly identified note. The maxima
of all detected notes will be normalized to the best global maximum. Then, a threshold for the
minimum correlation ratio Mk

Mmax
= 0.08 is defined. Every detected time series that is smaller than

this ratio, is set to zero. The result are refined time-series C′ [m].

2.5 Resynthesis and onset detection

The obtained smoothed time series C′ [m] are used to resynthesize the signal. Assuming a perfect
analysis result for every frame, it were possible to reconstruct the analyzed signal. However, in
real-world scenarios it is unlikely to get a perfect frame-based result. Comparing the analyzed
and resynthesized signal in this case leads to differences. Further error correction steps can
minimize the difference between the analyzed and resynthesized signal.

For the resynthesis step, at first a new signal is initialized with zeros, so that original and
resynthesis signal have the same length. The first derivatives of all time series C′ [m] are used to
find potential new note events. In this case, the derivative will be greater than zero. This returns
the time index, where the time function of a corresponding isolated note is added. After adding
all notes to the resynthesis signal, this will be normalized to a maximum amplitude of 1. Next
step is an energy-based onset-detection based on (3).

SDP1 [m] =
N

∑
n=1

H (|Xn [m+1]|− |Xn [m]|) with H (x) =
x+ |x|

2
(3)

H (x) is a function to consider only positive energy differences, because the onset is charac-
terized by a strong positive increase of energy. Assuming the magnitude spectrum of a periodic
signal, significant spectral lines will only occur at multiples of the f0. In between, many values
are almost zero and they change randomly over time. The PianoTranscriber calculates the entire
energy difference between two frames at first and applies H (x) to this difference according to
(4).

SDP2 [m] = H

(

N

∑
n=1

|Xn [m+1]|−
N

∑
n=1

|Xn [m]|

)

with H (x) =
x+ |x|

2
(4)
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With this small modification, the function will be only greater than zero if the entire
energy increases. This modified detection function is calculated for the original (SDPor [m]) and
resynthesized (SDPsynth [m]) signal to compare them and for the further error correction using
the following error function:

oErr [m] = SDPor [m]−SDPsynth [m] (5)

Two types of errors can occur – missing and additional onsets. The first is difficult to correct,
because it is not yet possible to assign the missing onset to a specific note. Additional onsets can
be assigned to a note by reconsidering the time series from previous steps.

If oErr is zero, then no error occured. If oErr is greater than zero and both SDPor and
SDPres, are greater than zero, a correct onset was detected. Errors occur only if oErr is not equal
to zero and one detection function greater than zero.If SDPsynth is greater than zero, an additional
onset was detected, which can be matched to the time-series. There, the incorrect value is set to
zero. The last step after correcting all potentially incorrect onsets, is to refine the new time-series
again and to resynthesize the final output signal.

3 Evaluation

To evaluate the PianoTranscriber, a corpus of piano chords with increasing polyphony was
analyzed. We used PianoTranscriber with base components obtained from the analyzed piano
and from other pianos. The state-of-the-art algorithm SONIC analyzed the same corpus with
standard settings, but its output of absolute frequency values was converted to MIDI pitches.

3.1 Audio material

The audio material used for parametrizing and evaluation was taken from the MAPS database [7]
that contains in total nine different datasets of piano recordings with annotations of all occuring
MIDI pitches within one time interval. Each dataset consists of 528 isolated notes in several
playing styles, monophonic excerpts (66 repeated notes, 132 trills, 9 chromatic scales), 3498
chords in different polyphony and classical music. For parametrizing and evaluation, the dataset
AkPnBcht was used without the loudness piano and classical music.

Because MIDI is a protocol for electrical musical instruments, the on- and offset times differ
from real-world data. Thus, the isolated notes and chords in the dataset were manually annotated
to obtain the real-world on- and offset times searching for the first and last tonal frame in the
signal. To annotate monophonic excerpts, offsets were determined by observing, how long one
f0 can be measured and perceived. The audio signals are stereo recordings. The channel with the
highest amplitude has been chosen to analyze mono signals.

3.2 Error measurements

Widely used error scores are taken from [11]. Nsys is the number of pitches reported by the system
under test, Nref the number of ground-truth pitches and Ncorr the number of correctly identified
pitches. Etot is a score for the overall transcription quality and the sum of three components Esubs,
Emiss and Efa. If Nsys >> Nref, Etot can be greater than 1 and Nsys = 0 will lead to Etot = 1.
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Etot =

M

∑
m=1

max
(

Nref [m]),Nsys [m]
)

−Ncorr [m]

M

∑
m=1

Nref [m]

(6)

The substitution error Esubs counts the number of ground-truth pitches that are not cor-
rectly identified. It is not important, which pitch was substituted. Only the overall number of
substitutions is important.

Esubs =

M

∑
m=1

min
(

Nref [m] ,Nsys [m]
)

−Ncorr [m]

M

∑
m=1

Nref [m]

(7)

The missing error Emiss counts the number of ground-truth pitches that could not be matched
with any reported pitch. Here, none of the reported pitches has to be correctly identified.

Emiss =

M

∑
m=1

max
(

0,Nref [m]−Nsys [m]
)

M

∑
m=1

Nref [m]

(8)

The false alarm error Efa counts the number of reported pitches that could not be matched
with any ground-truth pitch. Again, it is not important whether any of the reported pitches is
correctly identified.

Efa =

M

∑
m=1

max
(

0,Nsys [m]
)

−Nref [m]

M

∑
m=1

Nref [m]

(9)

If the number of output tends to be much larger than the ground-truth pitches, Efa can be
greater than 1.0. Then, the total error will be greater than 1.0 as well.

3.3 Results

Figure 2 shows the transcription results of the PT using single notes obtained from the analyzed
piano as base components. Analyzing a low polyphony leads to many false alarm errors because
of over-estimating the polyphony in many frames. Analyzing a higher polyphony leads to a
strongly increase of Emiss. This means that PT tends to recognize too few notes. This might be
caused by the distance limit θ .

Further base functions from the isolated notes of other pianos in the MAPS-database were
obtained and evaluated the same dataset as before to testify the ability to generalize. The results
are summarized in Figure 3. The whiskers of all plots mark the standard deviation of all errors.
Compared to the base functions of the analyzed piano, the error scores increased, because PT
was optimized with that specific piano. The standard deviation is small for all errors. This means
that the PianoTranscriber is basically able to generalize to other pianos.
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Figure 2 – Error scores for the PT using single notes obtained from the analyzed piano as base compo-
nents. The total error Etot is the height of each bar.
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Figure 3 – Error scores for the PT using single notes obtained from other pianos as base components.
The total error Etot is the height of each bar. The whiskers show the standard deviation of all error scores.

Finally, in Figure 4 the reference algorithm SONIC is evaluated with standard settings.
Comparing the result with PT using base functions from the analyzed piano, SONIC was
outperformed up to a polyphony of 5. Afterwards, similar results were achieved. The highest
error score is again Emiss, whereas Efa had the lowest influence on the analysis result. Obviously,
SONIC produces more errors caused by substitutions than the PT with arbitrary base functions.
This is critical for a reliable transcription, because it will lead to incorrect notes.
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Figure 4 – Error scores for the reference algorithm SONIC. The total error Etot is the height of each bar.

4 Conclusions and outlook

A new algorithm for Multi-Pitch-Tracking in music signals has been presented. Similar as the
FOURIER-transform decomposes an analysis signal into its single frequency components, PT
decomposed an input signal into notes and used base functions obtained from isolated notes
on a standard piano. Using isolated notes from the analyzed piano lead to error scores that are
comparable to the state-of-the-art. Further base functions from other pianos than the analyzed
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one were used to testify the generalization. This lead to an increased error rate, but the standard
deviation is small, which is important for a generalization. In comparison to the state-of-the-
art algorithm SONIC, PT outperformed SONIC up to a polyphony of 5 and achieved similar
results for a larger polyphony using base functions from the analyzed piano. Using PT with
base functions obtained from other pianos, SONIC outperformed PT. The PianoTranscriber is
currently implemented as a MATLAB GUI and as a script for server applications.
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