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Abstract: 3D-gesture is a new input modality that complements touch-screens and

speech dialog systems for automotive infotainment systems. Yet, tools for im-

plementing multimodal interfaces including 3D-gestures are rare. We present a

toolkit for in-car human-machine interfaces (HMIs), that allows modeling 3D-

gesture recognition and integration of gestures with speech. Our approach focuses

on three interaction styles: Firstly, we demonstrate how dialogs containing isolated

gestures, sequences of speech and gesture, and alternative uses of different modal-

ities can be modeled based on the state graph paradigm. Secondly, we show how

continuous gestural interaction, such as gradually modifying a value with continu-

ous hand movements, can be designed by binding hand model parameters to HMI

model values. Thirdly, we present an approach toward modeling and processing

of multimodal utterances with semantics distributed over speech and 3D-gesture.

The approach is based on a semantic representation of the individual modalities as

typed feature structures which are collected in a short-term memory. An integrator

module unifies partial meanings until a fully specified command is created which

can be executed. The approach has been implemented in a demonstration system

using a Leap Motion controller.

1 Introduction

3D-gestures are hand movements performed mid-air without contact to a touch-sensitive sur-

face. Infotainment systems supporting 3D-gesture recognition have been recently introduced to

the market. BMW, for instance, offers a system that allows controlling the sound volume with

3D-gestures, accepting or declining phone calls, rotating an image of the car, and freely bind-

ing a function to a custom gesture. VW’s high-end infotainment system recognizes right/left

swipe gestures for horizontally ordered menus, for photo browsing, or music album selection.

Gestures possess ergonomic and cognitive advantages over touch-screens. They involve less

strain, because no distant surface needs to be reached. In addition, targeting movements are

unnecessary, leading to less visual distraction of the driver [1]. Gestures further facilitate a

continuous style of interaction with gradually changing values. This is barely realizable with

speech and, being constrained to one or two dimensions, restricted for controls like turning

knobs or touch-screens.

When 3D-gestures are used in isolation, they are usually bound to a certain function of

the human-machine interface (HMI) requiring the user to memorize which gesture means what.

This led to research efforts defining how a suitable gesture set may look like [2]. Early spoken

dialog systems in cars similarly required the users to memorize specific commands for certain

functions. Present-day systems, however, allow for much more naturalness and variability in

spoken language. Instead of defining isolated gesture sets, more naturalness could be achieved
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Figure 1 – Basic structure of an HMI model: State graphs with states and transitions. States contain

interactive elements. Transitions are labeled with events.

by using gestures in the context of speech, because this is where they usually occur in conver-

sation. The same gesture could be used for different functions depending on the verbal context

and, vice versa, different gestures sharing a form property could trigger the same HMI function

in a certain verbal context. Multimodal speech and 3D-gesture input offers new styles of inter-

action, in particular when considering current trends in automotive HMIs. With displays getting

larger and more flexible, but also more distant, covering the entire dashboard or being projected

in the driver’s view, there are new opportunities for interaction design. Distant 3D-gestures and

speech could be employed in these scenarios, even more so when thinking toward autonomous

driving. Furthermore, 3D-gesture and speech interaction is useful for passengers, for instance,

in backseat entertainment where distant displays could be more conveniently controlled.

The development of advanced multimodal infotainment systems benefits from the existence

of HMI modeling tools that support these novel input techniques and allow their seamless inte-

gration with other modalities to a cohesive user experience. We present an extension of an exist-

ing toolkit for in-car HMIs [3], adding modeling means and run-time handling for 3D-gesture

recognition and integration with speech. It enables non-programmers to easily model multi-

modal dialogs, develop prototypes, and deploy the HMI system on an embedded hardware. In

the following section we discuss related work, and briefly explain the modeling approach of our

existing toolkit in section 3. We describe the modeling extensions for integrating 3D-gestures

in section 4, for continuous gesturing in section 5, and for integrating multimodal utterances in

section 6. Finally, we present a prototype system where these concepts have been applied.

2 Related work

Seminal work on multimodal integration of speech and gesture was conducted by Bolt [4].

Johnston et al. [5] introduced the unification of typed feature structures as integration paradigm.

Their approach is largely adopted in the current work. Skantze and Al Moubayed [6] suggest

a statechart-based toolkit for modeling face-to-face interaction. The dialog flow is modeled

with an extension to Harel’s state chart formalism. This is comparable to the approach used

here (cf. following section). Mehlmann and Andre [7] present an approach for the combined

modeling of multimodal fusion and interaction management. Fusion is conducted within a finite

state-machine by adding temporal, spatial, and semantic constraints. Latoschik [8] describes a

framework for multimodal interaction in virtual reality also covering continuous gesturing with

use cases comparable to the current work.

3 A modeling toolkit for automotive HMIs

Our HMI modeling approach is broadly based on Harel state graphs [9] (Figure 1).1 States can

be nested in compound states. Nested states inherit transitions defined for the parent. Transi-

1The approach is implemented in the HMI modeling software EB GUIDE.
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Figure 2 – An HMI model featuring three state graphs for different modalities.

tions between states are triggered by events which may be fired at any time during processing.

During run time, a state machine is instantiated per graph and processes the state graph model.2

An HMI may consist of multiple state graphs processed in parallel. Synchronization between

different state machines is achieved with events, because they are distributed to all state ma-

chines. There are separate graphs for graphic/haptic and for speech interaction. The former

contains view states describing the visual scene rendered on the display(s). View states con-

tain widgets for visual/haptic interaction with the user. The state graph for speech contains talk

states defining the dialog flow. Talk states contain spidgets (“speech widgets”) describing the

system’s speech output (prompts) and recognizable input (commands with slots) [3]. When a

state is entered, the elements it contains are getting rendered.

Each kind of interactive element (widgets and spidgets) is configured with a set of proper-

ties. Properties are named local variables that can be set by the modeler and may change during

run time. A command spidget for speech input, for instance, has a property defining the recog-

nizable utterances. The datapool is a common data model consisting of named global variables.

The system’s behavior may depend on the state of the datapool.3 Widget/spidget properties can

be linked to a datapool variable. That way, properties of different elements and even in different

state graphs can be synchronized. Their values are automatically propagated. Note that “being

in a state” by no means implies that the HMI is statically waiting for a user input. With bind-

ings between properties and the datapool and perpetual changes in the datapool, the HMI may

continually update and change even when there is no state transition.

4 Modeling isolated gestures, multimodal sequences, and alternations

For handling 3D-gesture input we introduce a third state graph (Figure 2). The graphics/haptic

graph contains a view state with graphical elements and a touch button. Upon touching, the

event finish shall be fired (indicated with the red flash). The speech graph contains a talk state

with a system prompt and a command that recognizes the words “break” and “cancel”. The

event finish is fired on recognition. Finally the new graph for 3D-gestures contains a move state

with two gedgets (gesture widgets) for the recognition of a swipe to the right and a pointing

gesture.

At run time all three state machines directly transition from the start to the respective main

states. The graphic/haptic elements defined in the view state are displayed on the screen. Si-

multaneously, the talk state is rendered causing the prompt “yes, please?” to be played, and

triggering the speech recognizer. Recognition of the gestures defined in the move state is also

concurrently triggered. If the user said “break”, the finish event would be fired, leading to a

transition to the final state in all state graphs. The same would happen in case of a swipe-to-the-

right gesture. A pointing gesture, however, would cause the speech state machine to enter the

talk state once again, playing the prompt and triggering speech recognition.

The example demonstrates how 3D-gesture can be smoothly integrated with other modal-

2The terms state graph and state machine are thus often used synonymously.
3Note that this is an extension to pure Harel state charts.
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Figure 3 – An HMI model for subsequent and alternative use of speech and gesture input.

ities: For isolated gestures that trigger a specific function of the HMI, a move state with an

appropriate gesture recognizer is modeled. On gesture recognition, an event is fired that may

lead to a transition in another state machine (causing a display/menu to pop up or a speech dialog

to be initiated). Similarly sequences of speech and 3D-gesture can be modeled using multiple

state charts. For instance, a chooser for music albums can be summoned up with a speech com-

mand as depicted in Figure 3. Subsequent browsing in the album list can be controlled either

with swipe gestures, or with speech commands (“next”, “previous”), which exemplifies alter-

native use of modalities to achieve a goal. Note that the graphic/haptic state machine executes

an action which is bound to receiving a next or previous event. A counter variable index which

is defined in the datapool is increased or decreased accordingly. The state machine enters the

view state showing the album covers again (internal transition), but the display is now showing

the cover with the new index as the selected album.

5 Continuous interaction

5.1 Sustained dynamic gestures

A simple use case for continuous interaction is increasing and decreasing the volume setting

with a rotational gesture. In this case the gesture cannot be regarded as a single event, but

the system needs to keep track of when the rotation starts and when it ends. As long as the

rotational movement is sustained, the volume is increased (or decreased). In order to model

this behavior, the interactive element for rotational gesture recognition gets two properties.

One defines the actions on movement onset, the other one on movement cessation. Figure 4

depicts an HMI model for this use case. The gesture state graph contains two elements, one for

recognizing a clockwise, and one for counterclockwise rotations with the extended index finger.

On onset recognition the event tickInc is fired (or tickDec for ccw movement). Furthermore

some values are defined in the datapool. First, there is the current volume setting as an integer

value. Additionally, two conditional scripts are defined. These scripts are triggered by the

tick events, and cause the volume setting to increase/decrease. To make sure that the volume

change sustains, the scripts themselves fire the tick events, but with a certain temporal delay.

That way, the conditional scripts are getting called periodically, gradually modifying the volume

setting. To stop the gradual volume change, any pending tick events are canceled on movement

cessation. The volume controlling unit/device simply reads the current volume setting from the

datapool.

5.2 Binding hand model values to the HMI model

A more elaborate form of continuous interaction with 3D-gestures consist of mapping hand

values to values of the HMI model. This could relate, for instance, to the palm position in 3D

space, joint angles, positions of the fingertips, etc. Rotating, moving, and scaling a 3D model
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Figure 4 – An HMI model for volume control with sustained 3D-gestures. Volume is gradually in-

creased/decreased with temporally delayed events.

of the car with a pinch gesture can be a use cases for this interaction style. 3D-gestures could

also be used for volume control in space, for instance by moving the sound source more to

the right/left or to the backseats. Note that only gesture offers this flexibility where multiple

dimensions can be controlled at once.

We introduce a new interactive element to be used in move states of the gestural state graph.

The hand model element is a gedget providing the hand configuration values in its properties.

Figure 5 illustrates how to model the pinch-and-move gesture use case. The gesture state graph

has two move states. The first one, entered initially, contains a gedget to recognize a pinch

gesture (tip of thumb and index have contact). Upon recognition the pinch event is fired leading

to a transition to the second move state. The state contains a hand model gedget providing

the hand’s configuration values. When the move state is entered the hand model gets activated

and its properties are continuously updated. Via datapool binding, the values for palm x and y

positions are propagated to a 3D display widget in the graphics/haptics state graph showing a

model of the car and bound to the properties for object rotation (rotX and rotY ). Concurrently

to the hand model another gegdet for pinch gesture recognition is active firing the release event

if the gesture ends. This leads to a transition to the first move state, thus deactivating the hand

model until another pinch hand shape is recognized.

6 Processing multimodal utterances with 3D-gesture and speech

The previous use cases focused on multimodality in a sequential or alternative sense and on

continuous gesturing. Understanding true multimodal utterances, however, means to integrate

the meaning fragments coming from each modality to a complete structure. Figure 6 depicts our

approach based on a use case where several warning icons are displayed on the dashboard while

the user asks “What does this red icon mean?” and concurrently points to the display (indicated

by a crossbar). In the following, we describe the modules and processing steps involved in the

integration process.
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integer 32 release GESTURE
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Figure 5 – An HMI model for a pinch-and-move gesture to rotate a 3D model in two axes. The x and y

positions of the hand are translated into rotations via a datapool binding.
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Figure 6 – Multimodal integration of 3D-gesture and speech for a pointing use case. User asks “What

does that red icon mean?” while pointing toward the visual scene.

6.1 Ontology

The ontology is an external resource defining the known classes of objects the multimodal

integration approach can deal with, including their hierarchy of inheritance and part-of rela-

tions. Figure 7 shows a simple ontology for the example use case. All classes are derived from

❖❜❥❡❝�. ■♥�❡♥� serves as a superclass for all executable commands the user may issue to the

HMI system. In the example, the ontology may contain a class ❍❡❧♣■❝♦♥ derived from ■♥�❡♥�,

representing a user’s query to get help about a specific icon being displayed. The icon is de-

fined as a named member of class ■❝♦♥ deriving from ❊♥�✐�②. An ■❝♦♥ has a unique ■❞ and a

❈♦❧♦�, both of integral (string) type. Members (parts) of a class can be defined as mandatory

or optional. An instance of a class is completely defined if all its mandatory members are com-

pletely defined. Instances of integral classes are completely defined if they have a value. The

ontology can be freely modified by the modeler.

6.2 Unimodal interpretation

The information provided by each modality is independently interpreted in the talk/move states

producing instances of the classes defined by the ontology. (cf. Figure 6). The talk state contains

a command for a query on an icon with a slot for the color. Upon recognition, an instance

of the intent ❍❡❧♣■❝♦♥ is asserted in short-term memory. The verbal utterance (“What does

that red icon mean?”) includes the icon’s color, but the id is yet unknown. Thus, the logical

form ❍❡❧♣■❝♦♥✭✐❝♦♥✭✐❞✭❄✮✱ ❝♦❧♦�✭✧�❡❞✧✮✮✮ is asserted. The pointing gesture provides

information on potential icons. The pointing interpreter computes screen coordinates from the

Object

Intent Entity

mandatory
icon: Icon

HelpIcon

color: string (optional)
id: string

Icon

to: Location
from: Location

ComputeRoute Location

latitude: float
longitude: float

Figure 7 – A simple ontology for the pointing use case. Boxes depict classes, arrows show is-a relations.
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Figure 8 – Demo use case 1: Accept/decline

an incoming call.

Figure 9 – Demo use case 2: Change volume

with a pointing gesture and up/down move-

ment of the hand.

gesture. Assuming that there is always some inaccuracy in pointing, the interpreter asserts icons

in short-term memory, which roughly match the target coordinates – the green and red icons on

the right-hand side in our example. This will lead to two instances of the entity class ■❝♦♥ being

asserted, with the logical forms ■❝♦♥✭✐❞✭✧✐❞✶✧✮✱ ❝♦❧♦
✭✧
❡❞✧✮✮ and ■❝♦♥✭✐❞✭✧✐❞✷✧✮✱

❝♦❧♦
✭✧❣
❡❡♥✧✮✮.

6.3 Short-term memory and multimodal integration

All instances are collected in short-term memory. Only those instances asserted within a limited

time span shall be integrated. This is because speech and gesture in a multimodal utterance

typically have a close temporal relationship. The short-term memory keeps instances for a

few seconds. If they cannot be integrated to a completely defined intent within this time span,

they are deleted. The integrator component operates on short-term memory trying to unify

and integrate incomplete instances that fit together. We adopted unification of typed feature

structures as integration approach [5]. In case an intent could be integrated to the point where

it is completely defined, it is forwarded to the HMI model and can be executed. In Figure 6 the

logical form ❍❡❧♣■❝♦♥✭✐❝♦♥✭✐❞✭❄✮✱ ❝♦❧♦
✭✧
❡❞✧✮✮✮ from speech can only be integrated

with the form ■❝♦♥✭✐❞✭✧✐❞✶✧✮✱ ❝♦❧♦
✭✧
❡❞✧✮✮ from gesture, while the second alternative

■❝♦♥✭✐❞✭✧✐❞✷✧✮✱ ❝♦❧♦
✭✧❣
❡❡♥✧✮✮ does not match due to the difference in color.

7 Prototype system

The modeling concepts described previously and the multimodal integration engine were imple-

mented as extensions to EB GUIDE.4 We used the Leap Motion 3D controller for the demon-

stration system.5 The modeling tool GUIDE Studio was extended by a state machine for 3D-

gesture input. Three gedgets were implemented, one for isolated recognition of several gestures

including the swipe gesture, one for the hand model, and a gedget for the interpretation of point-

ing gestures to the visual scene. The gedgets use an API provided by Leap Motion to access the

controller. Three use cases have been implemented. To demonstrate isolated gesture recogni-

tion, a simulated incoming phone call can either be accepted with a pointing gesture, by saying

the command “accept”, or by pressing the accept button on the screen. It can be declined with

a swipe gesture. For continuous interaction, a volume controller has been implemented that is

activated with a pointing gesture. While this gesture is sustained, the volume can be changed

by moving the hand up and down. Opening the hand will finally set the volume. Finally, we

implemented multimodal integration of speech and 3D-gestures referring to icons on the screen.

4https://www.elektrobit.com/ebguide/
5https://www.leapmotion.com/
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Figure 10 – Demo use case 3: Asking the system about the meaning of a warning icon on the display.

8 Conclusion

We have shown how 3D-gestures can be incorporated in automotive HMIs and how a state

graph-based modeling tool can be extended such that modeling multimodal interaction in a

common framework is possible. In particular, we proposed modeling techniques for continuous

interaction with 3D-gestures and an approach toward interpreting multimodal utterances with

distributed semantics.
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