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Abstract: Spoken human interaction comprises a variety of tasks and behaviours.
Since the state of a human is affected by various circumstances, it can change
during an interaction – for example, depending on the task at hand. Such interaction
stages occur in human-human interaction as well as in human-computer interaction,
and therefore are object of automatic detection and classification. In this paper,
we investigate several feature sets with respect to their suitability to the task of
interaction stages classification.

1 Introduction

A natural human conversation can include several distinct stages with their conversational tasks
and certain behavioural and interactional patterns, influenced by the current situation, the in-
terlocutors and their roles and personal characteristics like sex and age [1]. These influences
not only play a role in human-human interaction (HHI), they are also important for human-
computer interaction (HCI) [2]. On one hand, the differences elicited by such factors render
conversations unique and therefore are hard to process automatically for the purposes of HCI.
But on the other hand, they also offer additional information that can be used for designing
better interaction systems that are able to adapt, depending on the needs of the user, in an antic-
ipative way.

In order to use this additional information on the user’s current state, we need to assess it.
In a previous study, we preliminarily explored the influence of sex and age on certain acoustic
features of speech in different stages of close-to-real-life HCI [3], which is now being extended.
In the present study, we aim to investigate the suitability of the previously explored features for
the task of the detection of such consecutive interaction stages (cf. section 4) in the same close-
to-real-life HCI. For this, we compared the performance of the generated feature sets with the
benchmark set emobase [4] and a set feasible for addressee detection [5].

2 Research Questions

The aim of this study is to detect different parts of HCI, in particular, consecutive stages in a
spoken interaction with a companion-like technical system. In particular, two stages are ob-
served which are positioned consecutively in the course of an interaction but are separated by
a so-called barrier (cf. section 4 and Table 1). For this, we extended the acoustic analyses pre-
sented in [3] to all participants in the LAST MINUTE Corpus (LMC) and derived minimal
feature sets suitable for stage detection. This is done in a naive, naturalistic communication,
where the subject is (re-)acting in a non-scripted way but based on a well-established study
design (cf. [6]).

In particular, we are interested in two research questions:
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Q1: Can spectral or prosodic features indicating differences in consecutive interaction stages
be analytically identified to form minimal feature sets?

Q2: Can these feature sets be used to discriminate interaction stages?

3 Related Work

In [7], it is discussed that the detection and classification of an affective user state is an im-
portant issue in HCI. Especially, in a close-to-real-life interaction where the user is not limited
in wording, behaviour, and affect, this is a challenging task (cf. [8]). Aiming for the handling
of such situations, the focus in the spoken communication community shifted from acted emo-
tions, as provided for example in the well-received Berlin Database of Emotional Speech [9] to
more natural emotions and dispositions (cf. [10]) or so-called “in the wild” scenarios (cf. [11]).

Various investigations concerning automatic emotion recognition have been reported (cf.
e.g. [12, 13]) and have been extended to dispositions recognition (cf. [14]), also several anal-
yses are presented on the LMC (cf. e.g. [1, 15, 16]) that was also used in the current study
(cf. section 4). Considering the literature, it can be stated that acoustic emotion recognition
using machine learning methods still does not provide satisfying results for “in the wild” sce-
narios. Besides the optimisation of classification techniques, a crucial issue is the question
which features best describe the emotional content of spoken communication as well as possi-
ble changes of emotions (cf. e.g. [17]). Currently, various feature sets are being recommended,
most prominent the Geneva Minimalistic Acoustic Parameter Set (GeMAPS) [18] and versions
of the emobase feature set (cf. e.g. [4]). Analytical results for spectral features applied on
emotional states based on distinct emotions are reported (cf. e.g. [19, 20]). To the best of our
knowledge, the only comparison of spectral and prosodic features changes and how exactly they
change in different stages of close-to-real-life HCI is presented in [3], which provides the basis
to the current investigation.

In search of suitable feature sets, we considered related tasks, such as speaker identification
and addressee detection. We assume that the distinguishing of two addressees, either a human
or a technical system, is comparable to the issue of separating two interaction stages.
Automatic addressee detection via audio has already been in focus for some time, for example
as part of the INTERSPEECH 2017 computational paralinguistics challenge – here the task
was to detect whether the addressee was a child or an adult. For this task, the organisers of the
challenge offered two different feature sets. The first set is the ComParE acoustic feature set
containing 6737 static features resulting from various functionals of 65 Low-Level-Descriptor
(LLD) contours. This feature set is explained in detail in [21, 22]. The second set consists of
bag-of-audio-words features, where the audio chunks are represented as histograms of LLDs.
More details on this feature set can be found in [23].
For distinguishing between a human and a technical addressee, a sophisticated mix of lexical
and acoustic-prosodic features is used in [24]: besides lexical features obtained from automatic
speech recognition, the authors compute energy contour features, voice quality features, spectral
tilt features, and delta energy at voicing onsets and offsets. Statistical analyses of features
conducted in a naturalistic addressee detection scenario are obtained in [5] proposing a suitable
feature set.

4 Data Set

For this study, we used the LAST MINUTE Corpus (LMC) [25], consisting of naturalistic HCI
recordings of close-to-real-life HCI using a Wizard-of-Oz (WOZ) setup. In the experiments,
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Interaction Stage Triggering Event Task

Baseline – Introduction to the system
Listing 50% of categories finished Choosing items from a list
Challenge Reaching weight limit Deleting items
Waiuku Revealing destination Re-organising suitcase

Table 1 – Overview of the interaction stages during the LMC experiments and their respective barriers
and tasks.

the participants have to accomplish a suitcase packing task while the conditions grow ever
more complicated. The recorded interactions are divided into four distinct stages (cf. Table 1)
representing situations with an increasing difficulty [25]. Each of these stages is marked by
a so-called barrier [6] that allows to align the users’ utterances with a certain situation. The
interactions are built around an imaginary trip to an unknown location that shall be prepared in
limited time. In the first interaction stage, the participants get to know the system and introduce
themselves in order to get comfortable. In the second stage, the participants have the task to
pack a suitcase choosing items from a list via voice commands. In the next stage, they get the
information that the weight limit is reached and have to delete some items. In the last stage,
they receive the information that the trip is a winter trip instead of a summer trip, which leads
to a complete re-organisation of the suitcase. In conclusion, the participants are asked on their
overall interaction experience. An overview of the interaction stages is given in Table 1.

In the current study, we analysed the utterances of 89 participants, providing feasible audio
quality in the LMC (48 female, 41 male, 43 younger than 30 years, 46 older than 60 years), in
two sub-scenarios: the more relaxed stage “listing” and the more challenging stage “challenge”.
Both consecutive stages are separated by the “weight limit barrier” indicating that the airline
specified luggage weight is reached, resulting in a participant-initiated restructuring process
including deletion and choice of particular items.

5 Experimental Setup

In general, we implemented the setup as presented in [3]: 52 spectral and prosodic features, such
as intensity, Mel-Frequency Cepstral Coefficients (MFCCs), Line Spectral Pairs (LSPs), etc.,
were extracted using openSMILE’s emobase configuration [4], representing one mean value for
each LLD. Given the emobase setting, one mean value is obtained for each utterance. These
values were then averaged over all utterances of a stage per speaker. Based on the calculated
standard deviation for each mean LLD across all speakers, analyses provided remarkable dif-
ferences for certain features compared inter-stage-wise. These features formed feature sets to
be used in the detection experiments.

Besides the two identified feature sets (cf. section 6.1) 1) containing only highly remark-
able features (the calculated number of changes across speakers k ≥ 2.5σ ) and 2) containing
all remarkable features (k ≥ σ ), we tested the emobase feature set (serving as baseline) as well
as a feature set suitable for addressee detection [5]. The latter set is inspired by the idea of
knowledge transfer: In addressee detection, the aim is to discriminate utterances from two sit-
uations, namely those spoken to a human and those approaching a technical device, since this
task resembles the distinguishing between two interaction stages that we investigated.
Conducting the classification process, a Leave-One-Speaker-Out (LOSO) evaluation was ap-
plied where the material was 1) used as it is and 2) standardised separately for training and
testing (cf. [26]). Since we were mainly interested in the potential classification power of
each feature set, no particular fine-tuning of the classifiers was performed. For detection, the
distance-based Support Vector Machine (SVM) with linear and polynomial kernel as well as the

249



non-distance-based Random Forest (RF) were applied using Weka [27] reporting Unweighted
Average Recall (UAR) values.

6 Analyses of Consecutive Interaction Stages

6.1 Feature Sets

In the present study, we investigated the acoustic differences in consecutive interaction stages
(cf. research question Q1) of 89 participants of the LMC. Based on statistical methods explained
in section 5 and [3], we identified various features with are remarkably different in the consec-
utive stages across speakers. It is to be noticed that each difference can be directed towards an
increasing or a decreasing of the particular values. Most prominent are MFCC- and LSP-related
features in both the absolute values and respective derivatives (cf. Table 2). This finding high-
lights also the discriminative power of spectral features distinguishing interaction stages (for
emotions from speech cf. e.g. [17, 18]). Interestingly, prosodic features are less represented in
the identified ones. This might be influenced by the close-to-real-life conditions of the record-
ings (cf. section 4) where the expressiveness is generally lower related to smaller differences in
prosodic features.

Table 2 – List of features showing remarkable differences in consecutive stage on LMC. Highly re-
markable features are highlighted. Int refers to intensity, Loud refers to loundness, and ∆ indicates the
particular delta values.

Low Level Descriptors

L
L

D
In

st
a
n

ce
s

Int Loud MFCC1 LSP0 PCM_ZCR F0 ∆Int ∆Loud ∆MFCC1 ∆LSP1
MFCC2 LSP1 ∆MFCC2 ∆LSP2
MFCC3 LSP2 ∆MFCC9 ∆LSP3
MFCC4 LSP3 ∆MFCC12 ∆LSP4
MFCC6 LSP4 ∆LSP6
MFCC12 LSP5 ∆LSP7

LSP6

Based on the statistical analyses, we created two minimal feature sets (cf. Table 2) which
will be used for discrimination of consecutive interaction stages in section 6.2. We identified
14 highly remarkable features, mainly represented by MFCCs and LSPs that are highlighted
in Table 2. Besides the spectral features intensity, PCM_ZCR, ∆ intensity, and ∆ loudness
constitute the so-called F14 set. Regarding all 29 remarkable features the so-called F29 set
can be constructed (referring to all features listed in Table 2). Based on F29, we constructed an
extended feature set including LLDs’ functionals. This results in 409 features, the so-called F409

set. We chose this option, inspired by GeMAPS (cf. [18]), achieving an intermediate number of
features compared to emobase. All three sets are applied in the detection experiments.

6.2 Classification Results

In the detection experiments (cf. research question Q2), distinguishing between two consecutive
stages, we compared our feature sets identified by statistical analysis to the emobase set FEB

(988 features) [4] and a set feasible for addressee detection FAD (700 features) in a close-to-
real-life setup [5]. Furthermore, as discussed in section 6.1, we used F409 as possibility to
incorporate functionals like in GeMAPS or emobase. As stated in section 5, two classification
techniques have been considered, namely SVM and RF.
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The classification results in terms of UAR applying an SVM with linear kernel are shown
in Figure 1. For the F14 set, we achieved an UAR of 0.591 (±0.109). This performance is
an improvement of ∼5% relative to the baseline (emobase). It is to be noticed that we work
with naturalistic material with low expressiveness resulting in lower UAR values. Given the
variance (cf. Figure 1), it can be stated that the results utilising different features sets do not
vary significantly.

F14 F29 F409 FAD FEB
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Figure 1 – Mean values of unweighted average recall (UAR) and variances of respective feature sets
applying a linear Support Vector Machine on standardised data.

The detection results applying SVMs do not show any statistical significance. To elimi-
nate any influence of the classifier, we also conducted detection experiments utilising the non-
distance-based RF classifiers. The results are presented in Table 3. Comparing the results
of SVM and RF, we see a clear difference in the performances of the particular classifier ap-
proaches related to the feature sets. Especially, the SVMs benefit from the statistically identified
features in F14 and F29. In contrast, RF techniques already internally provide a feature selection
(cf. [28]) which benefits from a larger number of features. Therefore, it can be assumed that
smaller, already well-defined feature sets reduce the selection power of the RF. However, the
internal selection process (cf. [28]) further reduces the number of utilised features, resulting in
a decrease of UAR values (cf. Table 3).

Table 3 – Unweighted average recall (UAR) and variance for Random Forest classifiers on five different
feature sets.

Feature Set F14 F29 F409 FAD FEB

UAR 0.564
(±0.104)

0.578
(±0.108)

0.645
(±0.101)

0.656
(±0.102)

0.654
(±0.111)

7 Discussion

Given our approach just LLDs were considered in the analytical evaluation of features to dis-
criminate interaction stages. The averaging, reflected by the mean values per feature, is used to
generate a measure on utterance level. This approach is reasonable since it can be assumed that
small differences per frame can be neglected to obtain a broader understanding of distinguishing
characteristics. Besides identifying remarkable features, we conducted detection experiments
for consecutive interaction stages based on the LMC. For this, distance- and non-distance-based
classifiers were applied to avoid any influence caused by internal classification methods.

Given the results presented in Figure 1 and Table 3, we can state that the proposed feature
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sets do not differ significantly in the detection performance. The distance-based SVM on F14

achieved a ∼5% better UAR compared to the baseline. Taking functionals into account, the
SVMs’ performance decreased slightly which may be a result of the higher complexity to find
appropriate separations in the larger feature space. In contrast, using a non-distance-based
method like RF, functionals help to distinguish interaction stages as the internal RF’s feature
selection benefits from a larger number of features. Nevertheless, the F409 set performed almost
equally compared to larger feature sets containing 700 or 988 features (cf. Table 3). The idea of
transferring features suitable for addressee detection (cf. [5]) to interaction stage detection (cf.
section 5) did not improve the classification performance compared to F409 or emobase.
Since the different feature sets perform similarly in the given task (no statistical differences),
already a small feature set, especially feasible for HCI systems under mobile conditions, can
indicate different interaction stages. Even a more complex feature set comprising 409 features
halved the values to be considered compared to the common 988 features in emobase. This is
an aspect especially important for mobile devices with limited resources.

8 Conclusion

In this paper, we analysed interaction stages of 89 participants of the LMC [25], a naturalistic
HCI corpus. In particular, we investigated two research aspects regarding suitable features for
interaction stage discrimination and classification performances based on the LMC.

Based on statistical analyses (cf. section 5 and [3]), we identified remarkable features which
provide discriminative power for interaction stages. As given in Table 2, most features are
related to MFCCs and LSPs. Therefore, we contributed to the still ongoing discussion on the
question which features are feasible for recognition tasks from speech.

Additionally, we conducted various detection experiments based on the identified features
compared to two “baseline” sets, namely an addressee detection feature set [5] and emobase

[4]. For both classification approaches no significant differences in the performance of the
particular sets were seen. Therefore, we can conclude that our small feature sets provided a
similar recognition performance. In particular, an UAR of 65% with a RF-based approach and
utilising 409 features was achieved (cf. Table 3). This is of certain interest especially for devices
with limited resources, for example for mobile devices.
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