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Abstract: Certain emotions can have a negative effect on the driver’s capability
of safely operating the vehicle and can ultimately lead to accidents. Therefore, it
would be beneficial if the vehicle was able to detect the emotional state of the driver
and provide appropriate assistance to mitigate these effects. This study investiga-
tes the influence of in-car acoustic characteristics and driving noises on emotion
recognition from speech. The quality of the noisy speech samples was analyzed
by calculation of SNR and CER[%]. Afterwards, classification experiments on
high quality, in-car and noisy speech samples were carried out and evaluated. Data
was recorded inside a car cabin in a simulator environment, resulting in realistic
conditions where perturbations are being convoluted with the speech samples. For
comparability with the state of the art, standard emotional speech databases were
used for the evaluations conducted in this study. By considering the evaluated qua-
lity and classification measures, we conclude that high quality emotional speech is
most severely impaired in the car, and that highway noise reduces the performance
of the emotion classifier strongly. This leads to further requirements for in-car
emotion recognition.

1 Introduction

It is well known that emotions can affect the behavior of a driver in negative ways [1, 2].
These emotions can be caused by internal sensations from out body, external factors or prior
experiences [3, 4]. To mitigate these negative safety aspects, the car should be able to detect the
emotional state of the drive and enhance the driving safety and comfort, for example by offering
automation in critical situations (from driver assistance to highly automated driving).

From speech emotion recognition it is known that recognition rates can reach high values
(> 90%) for acted emotions under clear recording conditions. Further, research has shown to
date that these rates drop considerably (< 60%) if naturalistic emotions are considered [5], and
if data is disturbed with artificial noise or if recordings are performed in noisy environments
[6]. A less investigated scenario are in-car settings. Here, particular naturalistic emotions will
be observed, and the acoustic recordings will be naturally perturbed by convoluted in-car noise
which is of a special nature. Previous investigations have only superimposed clean speech to
different car noise types and noise levels [7]. Some studies concentrate on convoluted in-car
noise but disregard the presence of the in-vehicle acoustics [8], others are simply not designed
to evaluate the driver’s emotional state [9].

The present paper will investigate the quality and recognition performance of emotional
speech under replayed simulated highway noise in a driving simulator, recorded with high qua-
lity directional microphones.
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2 Database

As database the data samples of the Berlin Database of Emotional Speech (EMODB) [10] and
the Vera am Mittag (VAM) corpus [11] were replayed under controlled test conditions in a
driving simulator of Continental Automotive GmbH (see section 3). By choosing well-known
datasets we obtain comparability with published results under different conditions. The original
samples were normalized to a similar volume level and edited into one sound file interrupted
by pauses of one second silence per utterance. Afterwards, the recorded sound files were se-
parated into the original snippet, containing the identical utterance of the original sample but
of disturbed nature. By replaying the samples in the simulator, the simulated car noise was not
superimposed but convoluted with the speech samples.

Berlin Database of Emotional Speech :
The EMODB Dataset contains 494 utterances recorded in an anechoic chamber by 10 profes-
sional actors (5 male/5 female). Each actor simulated 10 sentences in seven different emotions
(neutral, anger, fear, joy, sadness, disgust and boredom). In total 800 sentences were recorded.
By conducting a perception test regarding the recognizability of the emotions and their natural-
ness, all utterances with a recognizability of over 80% and naturalness of over 60% were chosen
as final samples of the dataset [10].

Vera am Mittag :
The VAM corpus is an audio-visual emotional speech database containing recordings of the Ger-
man talk show “Vera am Mittag”. The dataset comprises 946 utterances of 47 non-professional
speakers (11 male/36 female). All utterances were labeled, in terms of the emotional dimensi-
ons valence, arousal and dominance using the SAMs, by 17 human listeners [11]. The labels
were then mapped onto the four quadrants of the valence-arousal level (q1, q2, q3, q4) [5]. As
the samples were taken from natural-like conversations, the number of utterances is unequally
distributed among the emotional categories.

3 Recording Setup

3.1 The Simulator

The study is conducted in a fixed-base driving simulator, located at the premises of Continental
Automotive GmbH in Babenhausen, Germany. The simulator consists of a BMW 5-series chas-
sis, connected to the simulation environment and placed in front of a wide screen (Figure 1).
Environmental noise as well as engine sound is generated by the simulation environment and
fed into the vehicle chassis by a set of strategically placed speakers/actuators. The engine sound
is generated by an actuator placed underneath the vehicle’s engine hood using it as a resonator
in order to create a realistic engine sound. Environmental noise is generated by speakers, placed
in each front door and the rear window shelf, providing the experience of surrounding sound.

3.2 Microphone Integration

The recordings of the replayed emotional samples were conducted using two directional shotgun
microphones placed at the A-pillars of the simulator vehicle directed towards the driver. The
samples were played back from loudspeakers mounted at head heights on the driver’s seat.
Two different recording scenarios were used to obtain samples only influenced by the in-car
acoustics (simulator turned off, no environmental noise present) and disturbed with simulated
highway noise (simulator turned on).
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Figure 1 – The driving simulator used in the study.

3.3 The Route

During the part of the experiment when the simulator is turned on, it is operated in automated
driving mode in order to allow the placement of a speaker in the area where the driver’s head
would usually be located (see section 3.2). The simulated route models a two-lane highway
and has been designed with varying traffic density in order to diversify the environmental noise
during the course of the experiment. In addition to that, the vehicle’s velocity has been manu-
ally adapted frequently and a number of lane changes have been manually triggered from the
simulator’s control room.

4 Methodology

This section gives a detailed description of the used methodologies. By replaying the original
speech samples inside of the simulator, we assume a decrease in the quality of the samples. To
evaluate this assumption the Signal-to-Noise Ratio (SNR) and Compression Error Rate (CER)
were calculated. To also evaluate the influence of noise in speech emotion recognition, state-of-
the-art classification experiments were carried out.

Peak Normalization :
The calculation of the SNR and CER are both based on the signal power of the speech samples.
To obtain correct SNR and CER values the signal power of the waveform of the clean and noisy
speech samples need to be of the same loudness. Because of the absorbing characteristics of the
in-vehicle acoustic characteristics and the distance between the microphones and loudspeaker,
the signals were peak normalized to overcome this difference. This method normalizes the
speech sample to a desired maximum amplitude of the Waveform (dB). In the presented work a
maximum amplitude of −1dB was chosen for all speech samples (clean and noisy).

Signal-to-Noise Ratio :
The SNR is defined as the ratio between the power of the clean speech sample (Ps) and the
power of the noise signal (Pn) superimposed to the clean speech and is denoted in dB:

SNR = 10 · log10(
Ps

Pn

) (1)

For the recording setup presented in section 3, the noise signal is convoluted with the replayed
audio sample (Pns). A separate recording of the in-car noise was not realized. Therefore eq. (1)
needs to be adapted. It is assumed, that the noise power can be estimated by subtracting the
power of the noisy speech from the power of the clean speech: Pn = Pns −Ps. This assumption
is only valid for ideal recordings, where the power of the clean speech is identical to the power
of the speech part contained in the noisy speech. In the presented study this is not the case, as:

1. The acoustic characteristics inside the simulator vehicle suppresses the signal replayed
by the microphones. This leads to a general reduction of the signals’ power.
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2. For the noisy speech signal the noise amplitude can exceed the amplitude of the speech
part. By computing a peak normalization, the noisy speech signal is normalized to the
maximum amplitude of the noise and not of the speech content.

These effects may lead to incorrect SNR values and a negative denominator in eq. (1). Therefore
a positive constant α was introduced by the authors of [9]. Botinhau and Yamagishi introduce
the constant parameter α to compress the clean speech power and, by doing so, overcome the
problem of a negative denominator:

SNR = 10 · log10(
α ·Ps

Pns −α ·Ps

) (2)

In [9] the α value was chosen so that Pns −α ·Ps > 0 holds true for every speech sample. We
adapted this approach to our needs. By calculating α only using those speech samples recorded
while the simulator was turned off, α takes into account the in-vehicle acoustic characteristics
and the chosen recordings’ setup. This value was then utilized to calculate the SNR of the
speech samples recorded while the simulator was turned on. By using this approach, a negative
denominator may occur in eq. (2), caused by the peak normalization. These SNRs, comprising
only 4 samples, were excluded from further evaluations.

Compression Error Rate :
The CER as presented in [12] measures the absolute difference between the original and noisy
signal’s spectrogram in dB. To make results comparable over different datasets and experimental
setups, the measure was adapted so that the difference between the two spectrograms is given
as a percentage value. The spectrogram is computed and standardized as described in [12].
Negative values of the CER[%] characterize a decrease of power in the noisy signal compared
to the original sample and positive values an increase of power, respectively.

Classification Experiments :
The classification experiments were carried out using the software tool WEKA [13]. As state-
of-the-art classifier we opt for Support Vector Machines, which were trained and tested via the
leave-one-speaker-out approach, using the “emobase” features obtained from the openSMILE
feature extraction toolkit [14].

Unweighted Average Recall :
The Unweighted Average Recall (UAR) is used as measure to indicate the performance of a
conducted classification experiment over its mean average recall of one speaker [15]. For the
recognition experiments the UAR was calculated for each speaker over all present emotions.
Afterwards, these UARs per speaker were averaged over all speakers.

5 Realization

The classification experiments were conducted using the non-normalized speech samples. By
doing so we overcome power differences of samples within the recording setups (left/right mi-
crophone and simulator on/off), caused by effect 2 described in the section 4. This also means,
that the power level of the original replayed speech samples can differ significantly from the
power of the recorded speech samples. To test if this difference in the signals’ power result
in significant changes of the classification experiments, the classification results of the original
recorded data and normalized recorded data were tested against each other using analysis of
variance (ANOVA). As the results of these pre-tests showed that the difference between the
original and normalized samples are not significant for all recordings (P-value > 0.6), we as-
sume that the signals’ power does not affect the classification results significantly, and we can
therefore use the original non-normalized recordings for further analysis.

An overview on the conducted experiments is given in table 1. The experiments were
all carried out for each corpus (EMODB/VAM), microphone (left/right) and simulator setting
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(on/off) separately, resulting in 8 classification experiments used for evaluation (#experiment:
1-8) and 2 experiments as baseline using the original data sample (#experiment: 9,10).

Table 1 – Overview of the conducted classification experiments used for evaluation.

# experiment corpus microphone simulator

1 EMODB left off
2 EMODB right off
3 EMODB left on
4 EMODB right on
5 VAM left off
6 VAM right off
7 VAM left on
8 VAM right on
9 EMODB - -

10 VAM - -

6 Evaluation of Results

6.1 Quality Assessment

Table 2 – Means and standard deviation of SNR and CER for EMODB and VAM.

# setting SNR # setting CER

1 -1.83 (3.24) 1 -5.77 (6.40)
2 -3.07 (3.38) 2 -5.09 (6.53)
3 -5.10 (3.43) 3 13.34 (8.26)
4 -6.43 (3.12) 4 14.36 (9.54)
5 -0.68 (2.09) 5 -7.23 (3.94)
6 -1.45 (3.09) 6 -7.64 (5.82)
7 -2.03 (2.89) 7 9.34 (7.04)
8 -2.57 (3.41) 8 11.22 (9.09)

For the evaluation of the quality assessment via SNR and CER only the normalized re-
corded data samples of the left and right microphone were used. It was assumed that for the
“simulator off”-setting, only the in-vehicle acoustics and the recording setup influenced the qua-
lity of the recording. The quality measures of this setting will therefore give information on how
much these influences affect the recording quality. It was also assumed that the left microphone
recordings, located closer to the loudspeaker, receive better quality values than the right one.

The histograms (and fitted normal distributions) of the SNR distributions for the EMODB
and VAM corpus are shown in figure 2, with all microphone and simulator conditions. Their
means and standard deviations are given in table 2. It can be stated that the differences in the
SNR are highly significant for both, simulator setting and microphone placement (P−value <
0.001). As the volumes of the replayed original speech samples for EMODB and VAM were
adjusted to a similar level, the differences in the SNR-level can be explained by the different
recording qualities of the original datasets: EMODB was recorded in an anechoic chamber with
no surround sound/noise being present, while VAM was recorded in a television studio, with
audience and other interference factors. This makes the EMODB data samples more prone to
the in-vehicle acoustic characteristics and the highway noise of the simulator.

The results of the CER are given in figure 3 and table 2. By using the CER, information
on the spectral difference between the original and recorded speech samples is obtained. For
both, EMODB and VAM, the “simulator off”-setting results on average in negative CER-values
which indicates a decrease of spectral power of the recorded signal compared to the original data
samples. This can be explained by absorbing characteristic of the in-vehicle acoustics. For the
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“simulator on”-setting the average CER-values are positive, indicating an increase of spectral
power, caused by the convoluted highway noise of the simulator. The differences between the
“simulator off” and “simulator on”-setting of the left and right microphone are highly significant
for both datasets (P−value < 0.001).
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(a) SNR of EMODB data samples.
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(b) SNR of VAM data samples.

Figure 2 – Histograms of the SNR-distributions and fitted normal distributions of the “simulator on” and
“simulator off”-setting for the left and right microphone of the recorded EMODB and VAM samples.
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(a) CER of EMODB data samples.
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(b) CER of VAM data samples.

Figure 3 – Histograms of the CER-distributions and fitted normal distributions of the “simulator on” and
“simulator off”-setting for the left and right microphone of the recorded EMODB and VAM samples.

6.2 Classification

The results of the classification experiments described in section 5 can be taken from figure
4. The results of the reference classifiers, trained and tested on the original data samples of
EMODB (UAR = 79.61%) and VAM (UAR = 55.18%), are displayed on the left side of the
bar plots (crosshatched - blue). The classification results of the “simulator off” and “simula-
tor on”-setting are marked in red and green for both microphone placements (left/right). The
differences in the performance of the EMODB and VAM data samples are reasonable, as the
datasets contain different levels of naturalness and recording quality. Because of the EMODB
samples being more prone to the in-vehicle acoustics and highway noise of the simulator, the
performance of the trained classifiers decreases, respectively.

For EMODB the performance of the classifier trained on the “simulator on” samples is
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significantly lower (P−value < 0.02), compared to the baseline result. The positioning of the
microphones does not influence the performance of the classifiers significantly. The UAR of
the classifier obtained from the left and right microphone samples are similar considering both
simulator settings.

For VAM the emotion recognition of the in-car settings do not differ significantly from
the baseline recognition. This may be attributed to the fact that the naturalistic VAM data
was recorded in a talk show environment (as compared to EMODB’s studio environment) with
perturbing acoustic characteristics, hence the in-car setting has little further disturbing effect.
The performance of the evaluated classifiers does not differ significantly from each other, but
it can be noticed that a classifier trained on the “simulator on”-setting of the left microphone
samples outperforms the classifier of the right microphone samples. This is reasonable, as the
left microphone was positioned closer to the loudspeaker and therefore absorbed less noise,
compared to the right microphone.
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Figure 4 – Recognition results of the implemented classifiers for EMODB and VAM. The Stars denote
the significance level: * (P−value < 0.02) using ANOVA

7 Conclusion and Outlook

By calculating the Signal-to-Noise Ratio and the Compression Error Rate [%] we could draw
a conclusion on the recorded signals’ quality. For the SNR a significant quality difference
could be shown for all recordings’ setups, independent of the simulator setting (on/off) and
microphone positioning (left/right). It could be shown, that the “simulator on”-setting leads to
a significant decrease of the SNR compared to the “simulator off”-setting. This drop in signal
quality was also shown by an increase of the CER, which indicates an increase of the signals’
spectral power. From the classification results we could identify a relation between the decrease
of signal quality and the decrease of the classifiers performance. For EMODB the average signal
quality was indicated lower as for VAM. This also resulted in a higher performance decrease
for all classification experiments. It can also be stated that the simulated highway noise impairs
the performance of the classifier strongly, for EMODB even significantly (α = 0.05).

As outlook a multi-style training of the presented recordings is planned. Leave-one-speaker-
out classification experiments will be carried out, trained on data samples of the original dataset
and disturbed sample recordings. Additionally the performance of classifiers trained on both
recorded samples of the left and right microphone for each simulator setting will be evaluated.
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