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Kurzfassung: In this work, we propose an unsupervised monaural Arabic speech 

enhancement method that is based on two different techniques. The main idea is to 

determine an exact threshold value in the wavelet domain depending on the voicing 

state of the Arabic speech signal. Our proposed voiced/unvoiced decision algorithm 

based on the Multi-scale Product (MP) analysis is used. The MP is based on the mul-

tiplication of wavelet transform coefficients at three successive dyadic scales. Then, 

we apply a denoising technique based on the thresholding of the discrete wavelet 

transform coefficients. The threshold values change either when the signal is voiced 

or unvoiced. Further, a subspace decomposition-based post-processing technique is 

implemented. The Fast Fourier Transform (FFT) of the obtained frames is decom-

posed into three subspaces: sparse, low rank, and the remainder noise components. 

Experimental results show that the proposed approach outperforms the compared 

speech enhancement methods for noise-corrupted Arabic speech at low levels of 

SNR. Beside, we present the evaluation results for automatic recognition on en-

hanced Arabic speech signal. We reconstitute the clean Arabic speech from noisy 

observations based on a sparse imputation technique. It employs a non-parametric 

model and finding the sparsest combination of exemplars that jointly approximate 

the reliable features of a noisy Arabic utterance. 

1 Introduction 

Speech enhancement is a one of the most salient feature used in real-world applications, such 

as voice communication, hands-free accessories, voice-activated diallers for cellular phones, 

communicators in noisy cockpits, and automatic speech recognition (ASR) systems [1, 2]. 

Noise has a negative effect on both speech intelligibility and quality; a poor signal-to-noise 

ratio (SNR) may certainly result in a complete deficiency of speech intelligibility. 

In order to reduce undesirable background noises corrupting Arabic speech and to im-

prove the quality and the intelligibility of the speech in the presence of ambient noises, vari-

ous algorithms have been adopted. Generally the algorithms can be ranged into two principal 

categories of single-channel and multi-channel speech enhancement techniques. Although 

multi-channel algorithms have significant efficiency in some applications, there are still many 

practical situations in which only single acquisition channel is applicable. 

Fundamentally, there are four main types of approaches proposed in the field of single-

channel speech enhancement: spectral subtraction, statistical model-based approaches, sub-

space and wavelet transform approaches. 

The spectral subtraction is a single channel noise reduction from speech signals employs 

in the frequency domain by subtracting the noise spectral amplitude estimation from the noisy 

speech spectrum. This approach is effective in the case of stationary noise where the speech 

and the noise are independent [3, 4]. But it distorts the speech signal and introduces additional 

annoying residual noise in real environments. 
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In the statistical model-based approaches, the large variance of the spectrum coefficients 

is analysed as a Bayesian estimation problem [5]. Based on Gaussian statistics and a priori 

SNR estimation, Ephraim and Malah used the mean-square error (MMSE) to estimate the 

short-time spectral amplitude (STSA) [6], and the log spectral amplitude (LSA) [7]. Recently, 

Lu and Loizou proposed a method based on MMSE and maximum a posteriori (MAP) estima-

tors derived using a Gaussian statistical model [8]. The main drawback of the statistical model 

is that it doesn’t give a procedure to control the trade-off between the residual noise and the 

speech distortion. 

Typically, a subspace approach for speech enhancement is used in the time domain when 

the speech estimation is formulated as a constrained optimization problem, where the speech 

distortions are minimized subject to the residual noise power level [9]. In [10], the authors 

propose a normalized least mean square (NLMS) to reduce the signal distortion. However, 

these adaptative methods are sensitive to the spectral flatness of the reference input. 

In the last two decades, wavelet transforms (WT) have been applied on various research 

areas. The basic principle of speech denoising in wavelets family is based on the thresholding 

of the discrete wavelet transform coefficients (DWTC) to separate the target speech signal 

from those of noise. For noisy signal, applying a given threshold [11, 12, and 13] for all the 

DWTC irrespective of voiced or unvoiced speech regions may reduce undesirable background 

noises, but it can remove some unvoiced speech ranges with the additional noise. Thus has a 

negative effect on both speech quality and intelligibility. To solve this problem, the threshold-

ing must be adapted over time. Therefore, some papers have proposed to design the threshold 

technique to ameliorate the quality of wavelet denoising approach and to remove the deficien-

cy due to over thresholding of the speech signals by a simple time-invariant threshold [14, 15, 

16, 17, and 18]. 

From this spectrum, we propose a wavelet thresholding approach for speech enhance-

ment. Unlike traditional wavelet approaches, the threshold is adapted based on our 

voiced/unvoiced decision algorithm. The proposed approach is tested on noisy speech under 

various noise conditions including white noise, car noise, and babble noise. It is shown 

through experiment results that the use of the proposed approach can enhance the quality of 

noisy speech signal. 

The present paper is organized as follows. Section 2 describes the block diagram of our 

proposed approach for speech enhancement. The subsection concerns the details of all the 

steps constituting our approach. Section 3 concerns the experimental results. Finally, section 4 

concludes this paper and proposes the future work. 

2 Proposed Approach  

This section describes our proposed approach for Arabic speech enhancement. First, the sig-

nal is divided into 64 ms windows with 50% overlap between frames. Then, we calculate the 

discrete wavelet transform (DWT) of the noisy Arabic speech at four scales (3, 4, 5, and 6) 

using Daubechies wavelet. A thresholding process is applied on wavelet transform coeffi-

cients in each frame depending on the voicing nature of the frame. In fact, for voiced frames, 

we use a given threshold and for unvoiced frames, another threshold is fixed. For each scale, 

we apply the thresholding process. As a post-treatment, we apply an improved subspace de-

composition technique. 

The various stages are illustrated in Figure 1. 

In the followed subsection, the voiced/unvoiced (V/UV) decision method will be closely 

analyzed. 
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Figure 1 – Block Diagram for our Proposed Approach for Arabic Speech Enhancement 

2.1 Voiced/Unvoiced Algorithm 

The voiced/unvoiced algorithm is based essentially on the multi-scale product (MP) character-

istics. In fact, the MP permits to suppress false peaks caused by noise, obtain a more simplified 

signal quasi-null signal in unvoiced frames and having a periodic structure in the voiced 

frames. 

The proposed voiced/unvoiced algorithm uses the group classification of the multi-scale 

product in the frequency domain to classify the speech frames in voiced and unvoiced regions. 

The system block diagram of our voiced/unvoiced classification algorithm is shown in the 

figure 2. 

 

Figure 2 – Block Diagram for our Proposed Algorithm for Voiced/Unvoiced Decision 

According to Mallat, the WT, has shown excellent capacities for the detection of signal 

singularities. When the wavelet function has specific selected properties, WT acts as a differ-

ential operator. The number of wavelet vanishing moments gives the order of the differentia-

tion. This property of dyadic WT has been proven very useful for detecting pitch periods of 

speech signals [19]. 
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The multi-scale product analysis consists of making the product of the wavelet transform 

coefficients of the speech at 3 dyadic scales. The wavelet used is the quadratic spline function 

at scales s1=2
-1

, s2=2
0
 and s3=2

1
. 

The product  p n of wavelet transforms coefficients of the Arabic speech frame  x n at 

some successive dyadic scales is given as follows: 

   j

j=1

2
j=-1

p n = W x n (1) 

Where  j2
W x n is the wavelet transform of the Arabic speech frame  x n at scale j2 . 

A voiced frame of the FFT of MP gives a number of groups equal to 1 or to 2, whereas an 

unvoiced frame of the FFT of MP gives a number groups greater than 2. 

The parameter for the determination of the V/UV decisions is the group classification. 

We apply the fast Fourier transform (FFT) function to the spectrum of the signal multi-scale 

product. We define the number of groups constituted by computing the distance separating 2 

successive peak positions of the FFT of multi-scale product. Then, we rank this distance to 

compose a vector. The elements belong to the same group when the distance between two 

successive elements of the vector is less or equal to 10. In the case where the number of 

groups equal to 1 or to 2, the frame is declared as voiced, if not, the frame is considered un-

voiced. 

2.2 Wavelet Transform Thresholding 

The proposed wavelet transform denoising technique is based on a modified wavelet threshold-

ing (MWT). The DWT is applied on each frame of the input noisy Arabic speech, and the 

thresholding is applied on wavelet transform coefficients. However, we use a given threshold 

for voiced frames and another for unvoiced frames. 

We apply a soft thresholding that is given by the following equation: 

  sgn nc nc -th for nc th
Th_soft=

0 for nc < th

 



(2) 

Where nc is the noisy wavelet coefficient and th is the threshold value proposed in [11]. 

This threshold is: 

 Th= 2log N (3) 

Where σ  and N are respectively the standard deviation of zero mean additive white 

Gaussian noise and the length of the noisy speech frame.  

The standard deviation of noise must be estimated in order to determine the threshold 

value. The basic denoising method using WT considers that noise spectrum is white. There-

fore we can estimate the standard deviation in [11]: 

   1σ = Median c
0.6745

(4) 

Where c is the coefficient sequence of the noise WT. 

As the real noise is colored, we use a level dependent threshold suggested in [20]: 

 i i
Th = 2log N

i
 (5) 
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Where 
i

N  is the number of the samples, and 
i

σ represents the noise variance estimated on 

the scale i given by Donoho: 

   i i
1σ = Median c

0.6745
(6) 

Where 
i

c  is the set of coefficients of the i
th

 wavelet band of noise. 

If an analysis frame is classified as unvoiced, the threshold value used by equation (3) for 

white and by equation (5) for colored noise is multiplied respectively by a constant  and for 

a frame classified as voiced the threshold value is multiplied by the constant . 

2.3 Improved Subspace Decomposition 

In the noisy Arabic speech frames, we decompose the noisy Arabic speech data matrix X  into 

three subspaces: 

X S Re Lo   (7)  

Where S , Lo and Re represent sparse matrix, the low-rank components, and the remainder 

components respectively.  

First, we divide the obtained enhanced Arabic speech into frames with length equal to 

512 samples with half-length overlap. Second, we employ our subspace decomposition tech-

nique. We consider that the Lo lies on a low-rank sub-space, the speech signal is sparse, 

and Re is a random subspace. The assumption is based on the consideration that the speech 

signal is relatively sparse and has more variation whereas the noise spectrogram shows an 

iterative pattern. 

Now, we solve the following convex optimization problem based on our work at [21]: 

2

,
min

FS Lo
X S Lo    s.t.    ,card S s rank Lo l  (8) 

Where  rank Lo is the rank of Lo , and  card S is the cardinality of S . 

F
.  denotes the Frobenius norm of a matrix, S  is the maximum number of entries in S , 

and l  is low-rank constraint. 

After the low-rank component and the sparse component are obtained, remainder 

noise Re is derived as Re X S Lo   .  

Finally, we apply the inverse fast Fourier Transform function to obtain our enhanced Ar-

abic speech signal.   

3 Experiment and Results 

In this section, the proposed approach for speech enhancement is evaluated using objective and 

Arabic speech recognition tests. 

3.1 Simulation Conditions 

To evaluate and compare the performance of our proposed method, we carried out simulations 

with the Arabic speech corpus, which is composed of phonetically balanced utterances. The 

Arabic speech signals are sampled at 8 kHz and it is composed of 1813 sentences belonging to 

three males and three female speakers. To test the robustness of our algorithm, we add three 

background noises (white, car, and babble) at three SNR levels (0, 5, and 10 dB) to the Arabic 

speech corpus [22]. The noise is taken from the Noisex92 [23]. 
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3.2 Objective Evaluation Results 

To measure the enhancement quality of the noisy Arabic speech, we calculate two parameters 

namely: 

- The signal-to-noise ratio (SNR) measures the distortion of signal that reproduces the 

input signal. 

- The segmental SNR (SegSNR) is formed by averaging frame level SNR estimates. 

Our approach is compared to three recent speech enhancement methods named respective-

ly the wavelet transform based on teager energy operator (WT-TEO) [14], geometric approach 

(GA) [4], and soft Masking using a priori SNR uncertainty on magnitude squared spectrum 

(MSS-SMPR) [8]. The results of the SNR and SegSNR measures are detailed in table 1. 

For these two parameters, our proposed approach gives the best values except in two cases 

for the car noise at 10, and 5 dB where the MSS-SMPR method outperforms our approach. 

Moreover, the difference between the MSS-SMPR scores and those reached by our approach is 

not so large. Table 1 shows that the performance of the GA method remains acceptable but the 

WT-TEO keeps with the worst values. 

Table 1 – Performance Comparison of Different Methods in Terms of SNR and SegSNR 

Measures 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 Application to Rabic Speech Recognition 

In this sub-section, we present the evaluation results for automatic recognition on enhanced 

Arabic speech signal. We reconstitute the clean speech from noisy observations based on the 

sparse imputation technique. It employs a non-parametric model and finding the sparsest 

combination of exemplars that jointly approximate the reliable features of a noisy utterance. 

That linear combination of clean speech exemplars is applied to replace the missing features. 

The advantage of the imputation approach is that the reconstructed clean speech features can 

be converted to cepstral features, which improves recognition accuracy at high SNR’s. A 
clean speech frame is modeled by a mixture of Gaussians with diagonal covariance. This ap-

proach explains the imputation technique for a single Gaussian, but the results extend to a 

mixture of Gaussians. 

For our experiments, we used a test set, which comprises 5 clean and 30 noisy Arabic 

speeches. The noisy speeches are composed of three noise types (white, babble, car) mixed at 

Type of 

  Noise 

SNR 

level 

WT-

TEO 

Prop-

Appr 
GA 

MSS-

SMPR 

WT-

TEO 

Prop-

Appr 
GA 

MSS-

SMPR 

  SNR SegSNR 

White 

10 dB 12.31 14.34 12.51 13.70 1.49 2.08 1.34 1.81 

5  dB 8.11 10.12 8.39 9.45 -1.09 1.65 0.26 0.98 

0  dB 3.39 5.76 4.50 4.66 -1.08 1.02 -0.95 0.73 

Car 

10 dB 11.69 13.53 12.29 14.06 1.75 2.73 1.59 3.01 

5  dB 6.82 8.75 7.34 9.41 -0.34 1.06 0.01 1.35 

0  dB 2.97 4.55 3.18 3.56 -1.59 0.33 -1.43 -0.06 

Babble 

10 dB 11.03 13.70 11.42 11.78 1.26 2.38 1.11 1.74 

5  dB 5.94 8.36 6.45 7.59 -2.84 -0.90 -1.23 -1.25 

0  dB 3.55 6.07 3.81 4.24 -4.59 -1.83 -3.11 -2.69 
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the three SNR values. 23 frequency bands were used in all auditory filter-banks. The average 

recognition rate achieved by the sparse imputation technique is shown in table 2. 

Table 2 – Arabic Speech Recognition Rate [%] 

Type of noise SNR level Sparse imputation  

White 

10 dB 96.59 

5 dB 91.90 

0 dB 88.31 

Car 

10 dB 92.04 

5 dB 90.55 

0 dB 87.64 

Babble 

10 dB 94.78 

5 dB 89.24 

0 dB 83.86 

The recognition accuracies exposed in table 2 indicate that sparse imputation technique 

can recover the missing data even at low SNR’s. 

4 Conclusion 

The main idea of this paper is to apply convenient transformation on voiced sounds and other 

specific processing on unvoiced sounds to eliminate noise. It consists of thresholding the dis-

crete wavelet transform coefficients calculated at four scales. But the threshold value depends 

on the voicing state of the analyzed frame.  

The major contribution of this work consists to outperform the traditional thresholding 

based approaches. The proposed approach adapts the threshold value based on the V/UV de-

cision and optimized subspace decomposition (SD) is applied. 

Simulation results show that the proposed approach yields better results in terms of high-

er SNR, and SegSNR values than those of compared results in a better enhanced Arabic 

speech. Finally, the ASR results showed that the subspace decomposition (SD) is more advis-

able for speech enhancement applications than for ASR at low SNR. 
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