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Abstract: Neuro-physical investigations [1] hint to a new paradigm for feature extrac-

tion not used in ASR. This paradigm is based on synchronized brain to brain oscilla-

tions, active during speech production and speech perception. This mechanism leads 

to an evolving theory, the author calls the Unified Theory of Human Speech Pro-

cessing (UTHSP). The core elements of this theory are the articulatory rhythm and 

the articulatory code. Speech is produced by activating a sequence of articulatory 

codes.  Each code is transformed to an articulatory gesture steered by entrained gamma 

and theta oscillations called the articulatory rhythm. During each cycle of the rhythm, 

an articulator gestures is generated. During perception of speech, the articulatory 

rhythm of the speaker is reconstructed in the brain of the listener. In the cortex, the 

stream of spectro-temporal features delivered by the midbrain is aligned to phrases, 

syllables and phones steered by the articulatory rhythm. During each cycle of the 

rhythm, the aligned spectro-temporal features are integrated and transformed to a bun-

dle of articulatory features. Each bundle generated in a cycle describes a cycle-gesture. 

In phonetics, each phoneme is described by a phone-gesture. The cycle-gestures seem 

to have another structure than the phone-gestures. Thus, the relation between the cycle-

gestures and the related phonetic units is unknown. Human feature extraction is final-

ized by transforming each bundle of articulatory features to an articulatory code as 

used in speech production. Based on the UTHSP, an architecture for mimicking the 

extracting of human features is presented.  

1 Introduction 

Within the last 20 years, tremendous progress has been achieved in automatic speech recogni-

tion (ASR) leading to word error rates (WER) coming closer to the performance of human 

speech perception (HSP). For measuring progress, benchmark corpora are used representing 

realistic scenarios in verbal communication. The switch board corpus containing spontaneous 

telephone conversations is such a corpus, where an ASR-WER of 6.7% has been achieved re-

cently [3]. For this corpus, a HSP-WER of 4% has been measured [2]. Thus, the gap between 

HSR and ASR becomes closer. The performance of a LVSCR systems depends on its acoustic 

model, on its language model and on the coupling mechanism between both. In most bench-

marks the acoustic models and the language models are tuned to the benchmark corpora to 

achieve optimal performance. Thus, the comparison between ASR and HSP on these LVSCR 

tasks is problematic, because human perception is not tuned to specific corpora. A better bench-

mark approach is the concept of speech intelligibility [4], where phoneme error rates (PER) 

measured from nonsense syllables are compared. This method focuses on the performance of 

the acoustic model and on features, because no language model is involved1. The method to 

determine intelligibility is based on Fletchers work [5], who measured a PER of less than 2% 

for American phones. This result was achieved for ‘clean’ speech (no noise, no reverberations, 

and no band limits). Currently the TIMIT database, which is labeled manually into phonemes, 

                                                 
1 The author is convinced, that the performance of language models is comparable to the performance achieved 

by humans (Performance is measured in terms of entropy). Thus, the weakest part in ASR is the acoustic model. 

364



is used as a benchmark corpus for measuring PER. On this corpus, a PER of 15.7% has been 

achieved recently [6, (2014)].  Yet the TIMIT corpus is much too small to train acoustic models 

as described in [3], where very large corpora are needed (e.g. Switchboard:  2000hrs, 543 speak-

ers). Thus, the gap in on intelligibility between HSP and ASR is an open issue. Nevertheless, 

to close further the gap in performance, it is worthwhile to study human speech processing. 

Another point of view is the aspect of energy consumption, which is an emerging topic in ASR. 

As minimizing energy is a principle of evolution, models of HSP can lead to lower energy 

consumption for ASR.  

In ASR, several methods of feature extraction mimicking human speech processing have been 

implemented already. Examples are 

 the Mel Frequency Cepstral Coefficients (MFCC) [7] based on the property of the 

cochlear 

 spectro-temporal features [8] as the Perceptual Linear Prediction (PLP) [9] based on 

the features processed in the inferior colliculus [10] 

 processing in streams [11] performed on the auditory pathway [10] 

 articulatory features [12] processed in the belt of the auditory cortex [13] 

These methods lead to improvements in ASR especially in noisy environments. The break-

through to human performance has not been achieved yet.  

In recent years, large progress in understanding feature processing along the auditory pathway 

ranging from the cochlea via the midbrain to the cortex has been achieved [10]. Feature pro-

cessing is a process, where the auditory signal delivered by the hair cells is transformed in 

several steps along the auditory pathway. The main steps in transformation are the extraction 

of spectro-temporal features extracted in the inferior colliculus located in the midbrain [10], 

and articulatory features extracted in the belt of the auditory cortex [13]. Whereas the nature of 

the spectro-temporal features is sufficiently modelled [8], the nature of articulatory features is 

still an open issue. Areas of interest for exploring articulatory features are the surrounding neu-

ronal complexes (nuclei) of the auditory cortex (A1), and the surrounding nuclei of the sensory 

motor cortex (SMC). Progress in exploring the functionality of the cortex is fast, as more and 

more tools are available improving the precision to measure neuronal activity. Yet, as described 

in chapter 2, the tools available are not sufficient to derive algorithms for feature extraction, but 

allow to formulate the following two hypotheses for feature extraction:  

H1: Oscillations play a dominant role in steering neuronal processes in speech production and 

speech perception. The author calls the oscillations involved the articulatory rhythm. In speech 

perception, the articulatory rhythm of the speaker is reconstructed in the listener’s brain. In 

speech production, the articulatory rhythm steers the movements of articulators forming artic-

ulatory gestures. In speech perception, the articulatory rhythm controls the process of feature 

extraction, where spectro-temporal features are transformed to articulatory features.  

H2: Basis of human communication are articulatory gestures, which are defined by a code the 

author calls the articulatory code. In speech production, the sequence of articulatory gestures 

is generated from sequences of that code. In speech perception, the articulatory features are 

transformed to a code, which is identical to the articulatory code. Thus, in HSP the articulatory 

codes of a speaker are mapped to the articulatory codes of the listener. 

The two hypotheses are extracted from recent findings in neuroscience. The core elements of 

the hypotheses are the articulatory rhythm and the articulatory code described in chapter 3. In 

chapter 4, an architecture of a system simulating human feature extraction is presented.  
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2 Neuronal Functionalities and their Measurement  
The functionality of a single neuron, i.e. the relation between its input and output, is well mod-

elled by the physical relations based on the flow of ions [30]. Due to the electrical potential 

within a neuron, generated by the ion flow, a neuron can be set to a ‘state’, where it emits a 

train of electrical pulses. These pulses are transported via dendrites to other neurons, where they 

steer as input the ion flow. The algorithm modeling the ion flow are computational too expen-

sive to simulate the functionality of complexes of the neurons in the cortex. Alternatively, the 

functionality of neurons is modelled by simpler models describing the relation between ingoing 

and outgoing information contained in the electrical pulse trains [30]. The information is trans-

ported by two kinds of codes:  the rate code (number of spikes per sec), and the spike code 

(temporal position of spikes). In the following, examples of the codes related to feature extrac-

tion are given. 

The rate code is used for representing the value of features. E.g. for spectro-temporal feature 

the value is given by the value of the modulation spectrum extracted for a specific frequency 

and window. Similarly, the value of the rate code of articulatory features can be interpreted as 

the probability, a specific feature is observed2. The rate code can be measured by invasive or 

non-invasive methods. Invasive methods measure the potential (in the range of ± 100mV) of 

spikes use micro-electrodes (10 µm needles). Yet these methods are problematic due to ethics 

problems and limited number of neurons, which can be measured simultaneously3. Non-inva-

sive methods (functional MRT, PET, EEG) are mostly used in neuroscience. The resolution of 

these methods is far away to measure the activity of single neurons4. Neuronal activities are 

observed, if many neurons spike simultaneously. ‘Sparse activities’ are not detected. 

The spike code describes the timing of processes implemented neuronally for specific tasks. 

The timing of the spikes can be observed directly by invasive methods. Using non-invasive 

methods, the spike code can only be measured, when many neurons spike synchronous. The 

functions of the spike code – relevant for feature extractions are: measurements of delays, set-

ting clocks, and producing delays. An example of measurements of delays is given by acoustic 

feature processing in the olive complex [10]. The binaural difference of the timing of spikes is 

used for detecting the direction of sounds.  An example for setting clocks are the oscillations 

observed in the brain. The oscillations can be described by a spike code characterizing the 

phases and amplitude of the oscillation. Such spike codes are produced by special neurons [29]. 

The delay caused by the transmission of electrical spikes via the dendrites is also a functional 

element. Different delays of the same output of a neuron lead to receptive fields [10], on which 

operations as convolution can be performed neuronally5. 

From the discussion above it can be concluded, that the invasive and non-invasive measure-

ments available are not accurate enough, to decipher the functionality of the neurons involved 

in feature extraction. As shown in chapter 4, ‘intuitive engineering’ can be applied, to simulate 

human feature extraction. The ‘correctness’ of the simulation can be checked by consistencies 

to neuronal activities, to psycho-acoustic findings as described in [5,21], and to principles of 

evolution (e.g. minimal energy consumption). 

                                                 
2 This interpretation is equivalent to the functionality of NNs used in ASR (e.g. the estimation of the emission 

probability of a state of a phoneme) 
3 Concerning the number of neurons progress in this field is rapid.  Current micro-electrode arrays contain about 

4000 micro-electrodes (64x64 pats) at a sampling rate of about 8kHz. Larger arrays are in development. 
4 Current resolution of MRT is about 2 mm2 per pixel relating to the activity of 200 000 neurons. 
5 convolutional NNs as used in ASR simulate those operations, yet the delay is constrained to the fixed durations 

of frames (e.g. 10ms). The length of the dendrites can be optimized for the tasks. 
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3 The Unified Theory of Human Speech Processing  
The Hypotheses H1 and H2 are part of an evolving theory the author calls the United Theory 

of Human Speech Processing (UTHSP) 6. This theory treats speech production and speech 

perception as processes, which are interweaved neuronally. Both processes use common prin-

ciples in organization [26] and even common neuronal complexes [25,15]. The articulatory 

rhythm and the articulatory code, the core elements of the UTHSP, are treated in the following 

two sections. 

3.1 H1 – the Articulatory Rhythm 

The movements of many human (motoric) actions as walking, eating (chewing), and speaking 

are quasi-rhythmic. The movements are steered by neuronal oscillations – the action-oscilla-

tions. In parallel, sensory systems as feeling and hearing analyze these actions. In these pro-

cesses, oscillations – the sensory-oscillations - are involved. It is hypothesized, that the action- 

oscillations and the related sensory-oscillations are synchronous. The neurons producing the 

synchronous oscillations are either located in the same brain as in walking, or located in differ-

ent brains (brain-to-brain synchronization). The latter case is given in a speaker-listener sce-

nario, where oscillations can be interpreted as a motor control to perform ‘predictive’ speech 
perception [14,28]. The neuronal origin of the oscillations is unclear. It is assumed, that the 

oscillations are generated in a hierarchical manner with master clocks located in the hippocam-

pus. These master clocks are projected to the superficial layer of the nuclei, where they are 

transformed to oscillations, which are adapted (entrained) to the tasks of the neurons involved 

[29]. Modeling the oscillations as sinus waves, the positive part and the negative part of a wave 

can be mapped to two state, which alternate within each cycle. The states can be interpreted as 

modes of a cyclic attention as treated in the dynamic attending theory [16,14]. Attention coor-

dinates the information flow between different processes.  Slow and fast oscillations are used 

to coordinate processes with different timing. The function of the two states can be modelled 

by an alternating process of inhibition and excitation of a neuron [1]: 

 an input state, when the neuron is open for integrating incoming spike trains 

 an output state, during which the neuron emits spike trains and during which input 

processing is stopped.  

The states are equal in duration. Consequently, the incoming spike trains are blocked for half 

of a cycle. In the following, this kind of processing is called the cyclic attention processing. 

The articulatory rhythm is defined as the actions of different oscillation involved in speech 

production and speech perception. These oscillations can be described by their nature and its 

role. The nature describes the relation between the oscillations and phonetic units. The role 

describes, how the oscillations control the process of feature extraction and articulation.  

The nature of the articulatory rhythm is the same for speech production and speech perception. 

The articulatory rhythm is composed of three kinds of oscillations. Each cycle of such an oscil-

lation corresponds to a specific articulatory/phonetic unit as well in perception [31,19] as in 

production. The oscillations and the related units are:  delta oscillations [1- 3 Hz] ↔ phrasal 
units, theta oscillations [4 - 8 Hz] ↔ syllables, and gamma oscillations [25 - 45 Hz] ↔ phones.  

Further the oscillations are nested, i.e. the slower oscillations influence the faster oscillations. 

This hints to a hierarchical concept in speech processing. In speech perception, the listener’s 
articulatory rhythm must be synchronized with the articulatory rhythm of the speaker by the 

                                                 
6 In [32] a more ASR oriented but in intention similar theory – the Unified Approach for Speech Synthesis and 

Recognition (UASR) - is presented  

367



process of entrainment done in the ventral part of the sensory motor cortex (vSMC). Entrain-

ment is performed using edge features [1,29], which are assumed to be extracted in the belt of 

the A17.  

The role of the articulatory rhythm is different in speech production and speech perception. In 

speech production, the articulatory rhythm steers the timing of the movements of the articula-

tors [18]. Neuronally the commands for movements are generated in the vSMC. In speech per-

ception, the articulatory rhythm must perform two roles: segmentation of the stream of spectro-

temporal features into phonetic/articulatory units [1], and control of features extraction based 

on cyclic attention processing as described above. Both roles are performed in a single process, 

where the stream of spectro-temporal features delivered by the midbrain are transformed to 

articulatory features by neurons located in the STG [13,22]. The nature of the articulatory fea-

tures is treated in the next section 3.2. 

3.2 H2 - the Articulatory Code 

Phoneticians have hypothesized, that speech production can be modelled as a sequence of ar-

ticulatory gestures [17]. The gestures are described by distinctive features characterized by 

manner and place features [20]. Nowadays this hypothesis is supported by neuronal activities 

in the vSMC [18], yet the nature of the gestures seems to be different as assumed in [17]. The 

origin of this difference is caused by the involvement of the articulatory rhythm in generating 

articulatory gestures. Due to [1] during each cycle of theta oscillation a syllable, and during 

each gamma cycle a phone is produced. From the articulatory view, a phonetically defined 

syllable is related to a syllable-gesture, where the jaw opens and closed. Embedded in a sylla-

ble-gesture are faster gestures, the author calls cycle-gestures. Within each cycle of a gamma 

oscillation such a gesture produced. In the phonetic theory [17] each gesture represents a single 

phoneme called a phone-gesture. The author hypotheses that the phone-gestures are not equiv-

alent to the cycle-gestures. This is motivated by assumption that consonant cluster as {/s/, /t/} 

with the same place of articulation are generated during a single cycle of a gamma oscillation. 

Thus, it is assumed that clusters of phones are generated by a single cycle-gestures fitting better 

to a continuous rhythm, which can be entrained more easily.  

 During speech perception, articulatory features are extracted. The articulatory features are de-

fined by that bundle of features related corresponding to a cycle-gestures. Due to [13] manner 

and place features have been detected in the STG. Thus, the articulatory features are composed 

by a bundle of distinctive features characterizing a cycle-gesture. Due to hypothesis H2 the 

articulatory features are transformed to an articulatory code, which is identical to those to acti-

vate cycle-gestures. As the nature of the cycle-gestures is not deciphered, this holds also for the 

articulatory code. This problem is discussed also in [33], addressed as an old, yet unsolved 

problem. The transformation of the articulatory code seems to be located in the vSMC.  

4 Implementing Human Feature Extraction 

This chapter comes up with an architecture of a system mimicking human feature extraction. 

The architecture of the system is presented in fig. 1. The functionally of the building blocks are 

based on the hypotheses H1 and H2.  Due to discussion of the chapters 2 and 3, the exact func-

tionally of the building blocks as performed by human feature extraction is not known. Thus, 

the implementation of the building blocks is not straight forward and has to be done still by 

‘intuitive engineering’. The resulting functionality of the system must be checked against the 

functionality, as derived from knowledge sources as described at the end of chapter 2.  

                                                 
7 In lip reading edge features are generated in the visual cortex and are used to support the articulatory rhythm 

[27] 
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The extraction of spectro-temporal features is well explored and implementations are proposed 

[8,12]. Implementation of the building block ‘articulatory feature extraction’ has been described 

in [12] based on distinctive features modeled statistically [12, 21]. The statistical model is com-

patible with psycho-acoustic findings. The biggest issue is the implementation of the articula-

tory rhythm based on edge features. This issue opens a new field in neuronal implementation 

of entrained oscillations. A first implementation for speech perception is presented in [29].  This 

approach simulates the articulatory rhythm by simulating the neuronal flow of ions. This ap-

proach is computational very expensive. Below a less computational expensive implementation 

is proposed. Feature extraction described in [12,13] is done without cyclic attention processing. 

But this kind of processing can be implemented straightforward, because only the kind of tem-

poral windows used must be modified. As the nature of the articulatory features is not known 

yet (see chapter 3), the transformation of the spectro-temporal features to articulatory features 

and the transformation to the articulatory code is still an open issue. 

 

 

 

 

 

 

 

 

 

 

 

figure 1 – Systemarchitecture of human feature extraction. Five buildings blocks are involved in human feature 

extraction. Neuronal areas: IC=Inferior colliculus (midbrain), STG= superior temporal gyrus (belt of auditory cor-

tex), vSMC=ventral sensory motor cortex 

4.1  The Generation of the Articulatory Rhythm 

In ASR segmentation of speech into phonetic units, is an old problem implemented by algo-

rithms called search. In the beginning of ASR, it was tried to solve the search problem using 

decisions, based on acoustic features (bottom-up approach). But this approach was not success-

ful. Around 1980 a breakthrough has been achieved using the method of dynamic programming 

for recognition of continuous speech [23]. Using additionally sophisticated language models, 

and applying the framework of HMMs [24], this kind of search is still used nowadays (top-

down approach). But this method has two main draw-backs. First it uses a first order Markov 

model, assuming, that the features used in the search algorithms are statistic independent. Yet 

temporal adjacent feature vectors used in ASR are strongly statistic dependent. Second, the top-

down approach is computational very expensive leading to high energy consumption. 

Astonishingly evolution has solved the search problem with a bottom up approach. This ap-

proach does not rely only on decisions on acoustic features, but this approach integrates the 

process of speech production into the process of feature extraction as described in chapter 3.  

The implementation of the buildings blocks generation of edge features and generation of ar-

ticulatory is inspired of [29], especially the implementation of the edge features. For imple-

menting the articulatory rhythm, the starting point is the implementation of the entrained theta 
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oscillations modelling syllables. The oscillation can be described by sin-wave with variable 

amplitude 𝑎𝜃(𝑡) and the phase 𝜑𝜃(𝑡): 𝜃(𝑡) = 𝑎𝜃(𝑡) sin(𝜑𝜃(𝑡))                 (1) 

The edge features drive 𝑎𝜃(𝑡) and 𝜑𝜃(𝑡). Thus, a transformation from the edge features to the 

amplitude and the phase must be found. The performance of the match between 𝜃(𝑡) and the 

rhythm of syllables can be determined with speech databases, where the position of the syllables 

is labelled. In [29] the TIMIT database was used, and a good match was achieved. This result 

hints, that phonetically defined syllables are consistent with cycle syllable gestures. 

The 𝛾 -  oscillations have the same structure as (1), but they must match to cycle gestures and 

they must be nested into the 𝜃- oscillations. As mentioned above, the phonetic code of the cycle 

gestures is not known. A hint, how the cycle gestures are organized is given by the nested 

structure: each cycle of a 𝛾- oscillation corresponds to a cycle-gesture and a single 𝜃- cycle 

relates to n 𝛾- cycles, where n is the number of cycle gestures building a syllable. In [1] for n a 

value 4 was observed. If this is a general rule, perhaps the nature of the cycle gestures and the 

articulatory code can be deciphered straight forward. 

5 Conclusion 

Human feature extraction is an interweaved process of speech production and speech percep-

tion. Both processes are implemented neuronally by the same mechanisms described by the 

articulatory rhythm and the articulatory code, which are part of a United Theory of Human 

Speech Processing.  Based on this theory an architecture implementing human feature extrac-

tion system is presented. An open issue is a phonetic description of the set of cyclic gestures.  
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