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Abstract:

In this contribution a generalized spectral refinement method of speech signals will be pre-

sented which can either be applied at a preprocessing stage before or at a postprocessing

stage after a conventional frequency analysis. The refinement approach is based on a lin-

ear combination of weighted and shifted input speech signal segments. By applying the

refinement method - either in time or in the subband domain - a refined version of the orig-

inal short-term spectrum is obtained. Furthermore, the relationship between a polyphase

filterbank and a spectral refinement technique will be considered. It will be shown, that the

proposed refinement method applied as a preprocessor of conventional DFT-based analysis

filterbanks is an extension of polyphase-based filterbank structures. The proposed spectral

refinement technique is also very efficient and requires only few multiplications and addi-

tions. Experimental results based on the proposed refinement methods have shown that the

robustness of pitch frequency estimation can be enhanced considerably.

1 Introduction

The speech signals are often exposed to noisy environments such as engine and wind noise in a car.

Speech enhancement algorithms are utilized to attenuate undesired signal components while keeping the

desired speech signal as natural as possible. For computational complexity reasons speech enhancement

algorithms, e.g. noise suppression or echo cancellation for hands-free telephony, are often realized in the

subband domain [4]. Therefore, the noisy speech signal is first divided into overlapping segments and an

appropriate window function is applied to each segment. Afterwards each windowed segment is trans-

formed into the frequency domain using a DFT. The resulting subband signals are utilized to estimate the

power spectral density of the background noise or the fundamental frequency (pitch frequency) needed

for speech enhancement algorithms.

Due to the windowing of input frames a signicant frequency overlap of adjacent DFT subband signals

arises. This has the negative effect that trajectories of pitch frequencies cannot be easily separated which

is often important for speech enhancement schemes that involve pitch frequency estimation. Computa-

tional complexity can be reduced considerably using filterbanks with large sub-sampling factors. But

aliasing components appear which remarkably degrade the convergence behavior of echo cancellation

schemes. In order to reduce the spectral overlap and/or the aliasing effects, the DFT size might be

increased. However, the overall delay produced by the filterbank in the signal path will be higher. Some-

times the delay restrictions for different applications like hands-free telephony or in-car communication

can not be fulfilled anymore [3]. To overcome these drawbacks, the so-called spectral renement method

– applied as preprocessor before or as a postprocessor after a conventional frequency analysis – can be

utilized.
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2 DFT-Modulated Analysis Filterbank

Speech enhancement algorithms aim to reduce undesired noise components while preserving the undis-

turbed speech signal. The time domain microphone signal, y(t), is represented by y(t) = s(t) + b(t),
where s(t) and b(t) are speech and noise respectively. In order to separate the desired and the unde-

sired signal components, the microphone signal is usually first segmented into overlapping blocks of

appropriate size:

y(n) =
[
y(nR), ..., y(nR−N +1)

]T
=
[
y0(n), ..., yN−1(n)

]T
, (1)

where R denotes the subsampling factor, n the frame index, and N the block length. Applying a window

function

h =
[
h0, ..., hN−1

]T
, (2)

of length N to the input vector y(n) and computing a DFT to the weighted input vector results in N

frequency supporting points of the short-term spectrum (STS) of the current frame:

Y
(
e jΩµ ,n

)
=

N−1

∑
k=0

y(nR− k)hke− jΩµ k . (3)

The discrete frequencies Ωµ are equidistantly distributed over the normalized frequency range: Ωµ =
2πµ/N, with µ ∈ [0, N −1].
Using the notation of matrix-vector-multiplication the STS can also be described as follows:

Y
(
e jΩ,n

)
= DN Hy(n) , (4)

The quantity DN of order N is a DFT-matrix and H is a diagonal matrix containing the window coeffi-

cients.

3 Polyphase-based Analysis Filterbank

DFT-modulated filterbanks can be extended to so-called non-critically subsampled polyphase filterbanks

[2]. This means that the length Nlp of the window functions h̃k (also called prototype lowpass filters)

is allowed to be larger than the amount of subbands (determined by the DFT size N). This leads to much

lower aliasing components without increasing the computational complexity significantly. Depending

on the length Nlp of the filters h̃m, frameshifts of size R close to N can be selected. Typical design

procedures (e.g. [8]) can achieve a frameshift R ≈ 3/4N. However, this comes with filter orders of about

Nlp = 6 ...8N.

Nearly all considerations made until now are still valid if polyphase filterbanks instead of DFT-modulated

filterbanks are utilized except Eq. 3. The necessary polyphase extensions for the analysis part lead to:

Ỹ
(
e jΩµ ,n

)
=

N−1

∑
m=0

e− j 2π
N

µm
Nlp/N−1

∑
p=0

y(nR− pN −m) h̃m+pN . (5)

For the sake of simplicity and in order to show the relationship between polyphase analysis filterbank

and a filterbak that incooperates specral refinement the short-term spectrum Ỹ
(
e jΩµ ,n

)
will be rewritten

in matrix-vector notation. For this purpose, a vector yBlock(n) is defined which consists of the current

input signal frame as well as of the M−1 delayed ones each of lower order N:

yBlock(n) =
[
yT(n), ..., yT(n−M+1)

]T
. (6)

The input vectors are subsequently multiplied by a block-diagonal window matrix:

HBlock =




H(0) 0 . . . 0

0 H(1) . . . 0
...

...
. . .

...

0 0 . . . H(M−1)


 , (7)
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where H(m), m ∈ [0,M − 1], denotes a diagonal weighting matrix which consists of window function

coefficients for the m-th input signal vector as follows:

H(m) =




h
(m)
0 0 . . . 0

0 h
(m)
1 . . . 0

...
...

. . .
...

0 0 . . . h
(m)
N−1



. (8)

Given the prototype filter which is usually much larger than the number of subbands, the M window

function vectors of lower order N can therefore be set as follows1:

h(0) =
[
h̃
(0)
0 , ..., h̃

(0)
N−1

]T
, (9)

h(p) =
[
0, ..., 0, h̃

(p)
N+(p−1)R, ... h̃

(p)
N+pR−1

]T
, p ∈ [1,M −1] (10)

Therefore the prototype filter can also be described by a total sum of appropriately chosen low-order

window filter coefficients according to:

h̃mR+i =
M−1

∑
k=0

h
(m−k)
i+kR . (11)

Finally the higher resolution STS Ỹ
(
e jΩµ ,n

)
with N subbands computed by the polyphase filterbank can

be determined in matrix-vector notation by:

Ỹ
(
e jΩ,n

)
= DIBlock HBlock yBlock(n) (12)

The block-unit matrix IBlock = [diag{1},diag{1}, ...] comprises M identity matrices each of size N. Fig. 3

shows the structure of a polyphase analysis filterbank.
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Figure 1 - Structure of a polyphase analysis filterbank.

4 Revisiting Spectral Refinement Method

The SR method determines a refined STS, Ỹ
(
e jΩ̃,n

)
= [Ỹ (e jΩ̃0), ...,Ỹ (e jΩ̃

Ñ−1)] with Ñ = k0 N and k0 ∈
{2,3, ...}, by using the current spectrum and a number of time-delayed spectra Y

(
e jΩ,n−m

)
of lower

1It is assumed that the prototype filter length can also be described by Nlp = N +(M−1)R.
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order N without the need for an additional DFT of higher order Ñ:

S




Y
(
e jΩ,n

)

...

Y
(
e jΩ,n− (M−1)

)


 = Ỹ

(
e jΩ̃,n

)
. (13)

The matrix S refers to the refinement matrix with a dimension of Ñ xNM, where M is the amount of input

spectra, each shifted by a frameshift of R samples. It is assumed that the lower order short-term spectra

are already available. They might be used, e.g., to estimate the noise power for speech enhancement

within a hands-free system. However, in some situations it is desired to determine a higher resolution

STS in order to enhance feature extraction schemes such as pitch frequency estimation. For that purpose a

linear combination of the lower order short-term spectra as stated in Eq. 13 can be applied. The derivation

of the spectral refinement matrix S was firstly presented in [6] and will be shortly explained in the

following.

Before calculating the refinement matrix S a constraint for the higher resolution STS is introduced,

where M window functions of lower order N are appropriately weighted and subsequently adjacent

window functions are shifted by the chosen subsampling factor r. The so-obtained modified window

functions were summed up to obtain a desired higher order window function h̃l , l ∈ [0, Ñ −1]. Therefore

the higher order window function can be described by a weighted sum of appropriately chosen low-order

window filter coefficients:

h̃mR+i =
M−1

∑
k=0

a
(m−k)
i+kR h

(m−k)
i+kR (14)

with m ∈ [0,M −1] and i ∈ [0,R−1]. Consequently, the window function h̃ consists of a weighted sum

of shifted window functions h(m). The coefficients a
(m)
k , k ∈ [0,N − 1], can be designed in such a way

that a set of low-order window functions h
(m)
k are transformed into a desired window function of higher

order h̃l . The resulting order of the window function h̃ from Eq. 14 is given by:

Ñ = N + r (M−1) . (15)

In the upper part of Fig. 2 an example of weighted and shifted Hann-windows each of lower order (dashed

lines with N = 256, M = 5, R = 64) as well as the resulting window function of higher order (solid line

with Ñ = 512) is shown. The coefficients used for weighting the window functions have been chosen

as follows: a
(0)

k = a
(M−1)

k = 0.28K0, a
(1)

k = a
(M−2)

k = 0.72K0 and a
((M−1)/2)

k = K0. As normalization constant

K0 = 1/3 has been applied. In the lower part of Fig. 2 the corresponding analyses of the short-term

spectra are depicted. By comparing the results one can see that the main-lobe width as well as the side-

lobe amplitudes are reduced when using the weighted sum of shifted window functions h. Based on the

expression from Eq. 13 and the constraint from Eq. 14 a solution for the SR matrix is given by:

Si,mN+l =
1

N
e− j 2π

Ñ
imR

N−1

∑
k=0

a
(m)
k e− j2π( i

Ñ
− l

N )k . (16)

Once the general solution for the spectral refinement matrix is formulated, a simplification and approxi-

mation of the matrix can be performed [6].

5 Temporal Refinement of Short-term Spectra

As described in the previous section, a higher resolution STS is computed using a weighted sum of M

low order short-term spectra. The SR is applied at the output of a DFT-modulated analysis filterbank

as a postprocessor by means of FIR filters [6]. In this section it will be shown that the SR can also be

applied as a preprocessor of a conventional analysis filterbank and the resulting structure looks similar
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Figure 2 - Upper part shows the weighted and shifted Hann-windows and the resulting window function, lower part

depicts the corresponding spectra.

to polyphase-based filterbanks. Considering Eqn. 13 and 16 the refined spectrum can be rewritten in the

following way:

Ỹ
(
e jΩi ,n

)
=

M−1

∑
m=0

N−1

∑
l=0

Si,mN+l Y
(
e jΩl ,n−m

)
(17)

=
M−1

∑
m=0

N−1

∑
k=0

N−1

∑
l=0

a
(m)
k Y

(
e jΩl ,n−m

)
e j 2π

N
kl e

− j 2π
Ñ
(mR+k)i

(18)

=
M−1

∑
m=0

(
N−1

∑
k=0

a
(m)
k y

(
(n−m)R− k

)
hk e

− j 2π
Ñ

ki

)
e
− j 2π

Ñ
mRi

(19)

=
M−1

∑
m=0

(
N−1

∑
k=0

a
(m)
k yk

(
n−m

)
hm

k e
− j 2π

Ñ
ki

)
e
− j 2π

Ñ
mRi . (20)

The inverse transformation of Eq. 20 into the time-domain leads to a sum of M circular shifted and

weighted input frames:

ỹk(n) =
M−1

∑
m=0

a
(m)
l yl(n−m)h

(m)
l , (21)

with l = (k−mR)modM. The abbreviation ”mod” describes a modulo operation. Eq. 21 can be rewritten

in matrix-vector notation as follows:

ỹ(n) = ABlock HBlock yBlock(n) . (22)

The block diagonal weighting matrix ABlock of size NxMN consists of appropriate weights a
(m)
l from

Eq. 21 and it has the following structure:

ABlock =
[
A(0), A(1), ..., A(M−1)

]
. (23)
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Each element of ABlock characterizes a diagonal weighting matrix defined by:

A(m) =




a
(m)
0 0 . . . 0

0 a
(m)
1 . . . 0

...
...

. . .
...

0 0 . . . a
(m)
N−1




I(m) , (24)

whereas I(m) denotes a shifted version of an identity matrix I(m) = diag{1} of size N given by:

I
(m)
i, j = I

(0)
i,mod( j+mR,N) . (25)

Fig. 5 shows the realization of the spectral refinement as a preprocessing stage before a standard fre-

quency analysis. The resulting structure looks similar to the polyphase filterbank introduced in Fig. 3

except that the window fuctions h
(m)
k are additionally combined with appropriately chosen weighting

coefficients a
(m)
k . In order to find appropriate weights, first a vector a(m) is defined which gathers all
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Figure 3 - Realization of spectral refinement as a preprocessing stage before a standard frequency analysis. Symbol

⊗ denotes element-wise multiplication.

weighting coefficients a
(m)
k applied to the m-th window function h

(m)
k of low order:

a(m) =
[
a
(m)
0 , ..., a

(m)
N−1

]T
. (26)

Furthermore an extended vector ablock of size MN × 1 is defined which consists of all weighting coeffi-

cients for weighting M window functions of lower order N:

ablock =
[(

a(0)
)T
, ...,

(
a(M−1)

)T
]T

. (27)

As already described in the previous section, a higher order window function can be described by a

weighted sum of appropriately chosen low-order window filter coefficients. Therefore, the coefficients

a
(m)
l can be designed in such a way that a set of low-order window functions are transformed into a

desired window function of higher order according to:

min
∣∣∣∣ablock

∣∣∣∣2
2

s. t. h̃ = H̃block ablock , (28)

whereas ||.||22 describes the L2-norm. The block diagonal matrix H̃block with a dimension of N +(M −
1)R×MN consists of M window submatrices according to:

H̃block =
[
H̃

(0)
, ..., H̃

(M−1)]
. (29)
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The first element matrix H̃
(0)

adds (M − 1)RxN zero values below the diagonal window matrix H(0),

whereas the remaining matrices H̃
(1)

,H̃
(2)

, etc., represent cyclic shifts of H̃
(0)

. This means that equal

column indices of adjacent submatrices are rotated by R elements. Thus, the first and the last element

matrices are defined according to:

H̃
(0)

=

[
H(0)

0((M−1))RxN

]
=




h
(0)
0 . . . 0
...

. . .
...

0 . . . h
(0)
N−1

0 . . . 0
...

. . .
...

0 . . . 0




, H̃
(M−1)

=




0(RxN)

0(RxN)

...

H(M−1)


 . (30)

A weighting vector ablock has to be found that satisfies Eq. 28, where the L2-norm of the weighting

coefficients is minimized. The solution of the problem is given by:

ablock = H̃
†

h̃ , (31)

where H̃
†

characterises the Moore-Penrose inverse which is defined as:

H̃
†
= H̃

T

block

(
H̃block H̃

T

block

)−1

. (32)

6 Simulation Results

The refinement method can be applied to a wide variety of audio and speech signal processing applica-

tions. It is assumed that a lower order DFT is already available and is used for spectrum analysis and

synthesis within communication systems. However, in some situations it is desired to determine a higher

resolution STS in order to enhance feature extraction schemes such as pitch frequency or background

noise estimation. For that purpose the refinement method can either be applied at a preprocessing stage

before or at a postprocessing stage after a standard DFT of lower order. In the following the applica-

tion of spectral refinement at a preprocessing stage before frequency analysis for enhanced fundamental

frequency estimation will be considered. In the literature different algorithms for estimating the funda-

mental frequency of speech signals exist [1], [7]. For estimating the pitch frequency a method based on

the autocorrelation has been implemented. The noisy speech signal y(n) is first divided into overlapping

blocks of appropriate size and a window function is applied. The proposed spectral refinement method

applied to the input signal before applying the FFT according to Fig. 5 is utilized. Afterwards the short-

term power spectral density (PSD) is estimated. In order to compute the autocorrelation function (ACF)

an IFFT is applied to a normalized version of the PSD. A maximum search over the ACF in a certain
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Accepted tolerance < 3 %

Accepted tolerance < 10 %

Accepted tolerance < 20 %

Low SNR
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(20-25 dB)
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(10-15 dB)

Figure 4 - Relative improvements of the pitch frequency correctness for different tolerance ranges.

range of indices is performed and the argument of the maximum represents the normalized pitch period.
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By taking the inverse of the pitch period an estimate for the pitch frequency results. For more details, the

reader is referred to [5]. For the refinement a basic DFT of order N = 256, a frameshift R= 64, and M = 5

hann-windows of order N have been used. The weighting coefficients were set by: a
(0)

k = a
(M−1)

k = 1/10,

a
(1)

k = a
(M−2)

k = 7/30 and a
((M−1)/2)

k = 1/3. The performance and the accuracy of the pitch estimation

method without and with spectral refinement has been analysed for low SNRs (0-5 dB), medium SNRs

(10-15 dB), and high SNRs (20-25 dB). As reference a clean speech laryngograph database has been used

consisting of a high number of pitch frequencies out of the interval [60 Hz, 400 Hz]. For performance

analyses the correctness and the false detection of the estimated pitch frequencies have been considered.

Three value ranges have been examined for the correctness: pitch frequency estimation falls within a

tolerance range of 3 %, 10 %, and 20 %. A false detection occurs when the algorithm estimates a pitch

frequency while no reference pitch frequency exists at that instance. Fig. 4 shows the relative improve-

ments of the correctness of the pitch estimation method with spectral refinement for high, medium, and

low SNR. From the results one can see that a significant increase of correctness by about 30− 35 %

(rel.) at high SNR, approx. 15− 20 % (rel.) at medium SNR, and about 18− 20 % (rel.) at low SNR

are achievable. Analyses have further shown that the miss detection rate is nearly kept unchanged for all

considered SNRs while the correctness is considerably increased at the same time.

7 Summary and Outlook

In this contribution a refinement method of short-term spectra applied either as a preprocessing stage

or as postprocessing stage of an analysis filterbank for speech signals was presented. The refinement

method is particularly suitable for speech processing systems with already integrated analysis filterbanks

or DFTs. Therefore, by applying refinement methods as a preprocessing stage or a postprocessing stage

of a lower order DFT specific feature estimation schemes such as pitch frequency or noise power es-

timation can be further improved. In this paper the refinement method was realized as a preprocessor

of an analysis filterbank and was applied for pitch frequency estimation. Results show that the perfor-

mance of pitch frequency estimation can be enhanced considerably while the miss detection rate is kept

unchanged for all considered SNRs. Furthermore, the relationship between polyphase filterbanks and

spectral refinement methods was considered. It has been figured out that temporal refinement of short-

term spectra applied as a preprocessor of DFT-modulated analysis filterbanks can be considered as an

extension of polyphase filterbanks. Future work should be concentrated on how polyphase filterbanks

could be extended appropriately to achieve improved performance. Also the refinement method applied

for background noise estimation and for echo cancellation to reduce aliasing effects should be further

investigated.
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[4] E. Hänsler, G. Schmidt: Acoustic Echo and Noise Control – A Practical Approach, John Wiley &

Sons, Hoboken, NJ, USA, 2004.

[5] M. Krini, G. Schmidt: Model-based Speech Enhancement, in E. Hänsler, G. Schmidt (eds.), Speech
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